
FAIR bioinfo : Open Science and FAIR principles in a
bioinformatics project

How to make a bioinformatics project more reproducible

C. Hernandez1 T. Denecker2 J. Sellier2 G. Le Corguillé2

C. Toffano-Nioche1

1Institute for Integrative Biology of the Cell (I2BC)
UMR 9198, Université Paris-Sud, CNRS, CEA

91190 - Gif-sur-Yvette, France

2IFB Core Cluster taskforce

June 2021

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 1 / 50

Schedule

Introduction to snakemake workflow

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 2 / 50

Schedule

Introduction to snakemake workflow
Exercise 1: one unique step

More on Snakemake
Exercise 2: Running the snakemake workflow on our laptop

Bonus: From bash script to snakemake
Exercise 3: workflow of the RNAseq analysis

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 3 / 50

Introduction to snakemake workflow

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 4 / 50

Workflow definition

a pool of commands, progressively linked by the treatments of the input
data towards the results:

arrow: output of tool n − 1 = input for tool n

How to save time?

Improve algorithms? Are we ready to optimize Bowtie2? hem ... no!
With multiple data for analysis ⇒ we can parallelize.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 5 / 50

Data parallelization

Several data flows can be processed in parallel:

⇓

With a multi-cores PC or a computational cluster (ex. 2000 cores), we can
attribute one core to one workflow.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 6 / 50

Workflow management system

Many workflow management systems, many forms:

command line: shell (but doesn’t handle parallelization alone, need to
script it, not easy)

rule: , , , ...

graphic interface: Galaxy, Taverna, Keppler, ...

pros: important for reproducibility (keep track of when each file was
generated, and by which operation), manage parallelization
cons: learning effort

We choose

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 7 / 50

Snakemake rule
Snakemake: mix of the programming language Python (snake) and the
rule-based automation tool Make1

Good practice: one step, one rule

A rule is defined by it name and may contain:

input: list one or more file names

output: list one or more file names

command (run: for python ; shell: for shell, R, etc)

+ optional directives: params:, message:, log:, ...
Remark: with 1 command line, use a shell: directive ; with many
command lines, use a run: directive with python shell(”...”) functions.

1Make: https://www.gnu.org/software/make/manual/
Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 8 / 50

Hello World example

The objective of this example is to write ”Hello World” into the file
world.txt in the directory hello:

hello world.smk:

1 rule hello_world:

2 output: "hello/world.txt"

3 shell: "echo Hello World > hello/world.txt"

this rule contains only an output: directive (echo command
construction)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 9 / 50

Snakemake

Snakemake automatically makes sure that everything is up to date,
otherwise it launch the jobs that need to be.

Snakemake:

works on files (rather than streams, reading/writing from databases or
passing variables in memory)

is based on Python (but know how to code in Python is not required
to work with Snakemake)

has features for defining the environment with which each task is
carried out (running a large number of small third-party tools is
current in bioinformatics)

is easily to be scaled from desktop to server, cluster, grid or cloud
environments (ie. develop on laptop using a small subset of data, run
the real analysis on a cluster)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 10 / 50

Data flow linkage

A snakemake workflow links rules thank to the filenames of the rule input
and output directives:

Snakemake rules order:

the first rule (all, target, ...) specifies the result files, the next rules
describe how to achieve them.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 11 / 50

Rule execution order

Snakemake starts with the first rule that describes the workflow result
files. Since output files do not exist, it ”goes back” through the workflow
until it finds a file to apply a rule to.

For determining whether output files have to be re-created, Snakemake
checks whether the file modification date (i.e. the timestamp) of any file is
newer than the timestamp of the output file.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 12 / 50

Generalization with wilcards

Wildcards (a Snakemake key feature) allow to replace part of filenames:

reduce hardcoding: more flexible input and output directives, work on
new data without modification

are writing into {}

are automatically resolved (ie. replaced by regular expression ".+" in
filenames)

Wildcards are specific to a rule, a same file can be accessed by different
matching:

Ex. with the file ”101/file.A.txt”

1 rule one: output: "{set }1/ file.{grp}.txt" => set=10, grp=A

2 rule two: output: "{set}/file.A.{ext}" => set=101, ext=txt

(more on wildcards in the snakemake documentation)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 13 / 50

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#wildcards

With and without wilcards examples

without wildcards uniprot.smk

1 rule all:

2 input: "P10415.fasta", "P01308.fasta"

3

4 rule get_prot:

5 output: "P10415.fasta", "P01308.fasta"

6 run:

7 shell ("wget https ://www.uniprot.org/uniprot/P10415.fasta")

8 shell ("wget https ://www.uniprot.org/uniprot/P01308.fasta")

with wildcards uniprot.smk

1 rule get_prot:

2 output: "{prot}.fasta"

3 run:

4 shell("wget https ://www.uniprot.org/uniprot /{ wildcards.

prot}.fasta ")

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 14 / 50

Input (output) specifications

enumerated

1 rule one:

2 input: "P10415.fasta", "P01308.fasta"

python list & wildcards

1 DATASETS = [" P10415", "P01308 "]

2 rule one:

3 input: ["{ dataset }. fasta". format(dataset=dataset)

4 for dataset in DATASETS]

expand() & wildcards

1 DATASETS = [" P10415", "P01308 "]

2 rule one:

3 input: expand ("{ dataset }. fasta", dataset=DATASETS)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 15 / 50

Snakemake accesses

Laptop with docker

1 docker pull snakemake/snakemake #install (linux: add sudo)

2 docker run -v ${PWD}:/ data -w /data snakemake/snakemake

snakemake ... #run

Laptop with conda

1 conda create -n smk -env -c bioconda snakemake #install

2 conda activate smk -env ; snakemake ... #run

IFB core cluster

1 module load snakemake ; snakemake ... #run

check run: replace ... by --version

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 16 / 50

Exercise 1 : first snakefile

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 17 / 50

Practical exercise

For this practical exercise on Snakemake we will:

access to conda by the way of a docker container

access to snakemake and analysis tools by the way of a conda
environment (details about conda will be seen after)

create a first snakefile with one rule

add a second rule to create a first workflow

During this first exercise, we will execute several cycles: executing
snakemake, observing the result and improving the code. Each code
version will be noted ex1_oX.smk with X a progressive digit.
(or save on github ...)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 18 / 50

Practical exercise

The final objective is to
create a snakefile to
manage this small
workflow:

a small workflow

Input data

The input data, the RNASeq reads files,
may be downloaded from: https:

//zenodo.org/record/3997237

Download and unzip

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 19 / 50

https://zenodo.org/record/3997237
https://zenodo.org/record/3997237

Exercise setup
We will access to the analysis tools thanks to a conda environment,
envfair.yml (cf. next slide), designed for this small workflow:

Conda environment

1 # do go to the parent directory of Data (from the downloaded

and unziped data):

2 cd

3 # create envfair.yml

We will access to Snakemake by running a docker image containing the
conda tool:

Docker miniconda3

1 docker run -it -v ${PWD}:/ data continuumio/miniconda3

2 cd data

3 conda env create -n envfair -f envfair.yml

4 conda activate envfair

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 20 / 50

Exercise setup

envfair.yml

1 channels:

2 - conda -forge

3 - bioconda

4 - default

5 dependencies:

6 # workflow manager:

7 - bioconda ::snakemake -minimal >=6.5

8 # check quality of fastq data (java)

9 - bioconda :: fastqc =0.11.9

10 # R package to aggregate reports

11 - bioconda :: multiqc =1.9

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 21 / 50

Rule concept with one input file

Objective 1

Create a snakemake file named ex1_o1.smk including the first step of the
RNAseq workflow (the reads quality checking thank to the fastqc tool)
on one of the RNAseq files

Hint

input file: SRR3099585_chr18.fastq.gz in a local directory of yours

fastqc access: by running docker miniconda3 + activate the conda
envfair environment

fastqc command:
fastqc inputFileName --outdir FastQCResultDirectory

the 2 fastqc result files (*_fastqc.zip & *_fastqc.html) will be
located in the fastqc result directory and will be named based on the
prefix of input file (eg. SRR3099585_chr18_fastqc.zip)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 22 / 50

Solution

ex1 o1.smk

1 rule fastqc:

2 output:

3 "FastQC/SRR3099585_chr18_fastqc.zip",

4 "FastQC/SRR3099585_chr18_fastqc.html"

5 input:

6 "Data/SRR3099585_chr18.fastq.gz"

7 shell: "fastqc --outdir FastQC/ {input}"

Snakemake run

1 snakemake --cores 1 --snakefile ex1_o1.smk

Observe result

Look at the newly created FastQC directory: Snakemake create alone the
needed directories.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 23 / 50

One rule, 2 input files

Objective 2

Add a second input RNAseq file to the rule

Hint

input file: SRR3099586_chr18.fastq.gz in a local directory of yours

don’t forget the output files

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 24 / 50

Solution

ex1 o2.smk

1 rule fastqc:

2 output:

3 "FastQC/SRR3099585_chr18_fastqc.zip",

4 "FastQC/SRR3099585_chr18_fastqc.html",

5 "FastQC/SRR3099586_chr18_fastqc.zip",

6 "FastQC/SRR3099586_chr18_fastqc.html"

7 input:

8 "Data/SRR3099585_chr18.fastq.gz",

9 "Data/SRR3099586_chr18.fastq.gz"

10 shell: "fastqc --outdir FastQC/ {input}"

Snakemake run

1 snakemake -c1 -s ex1_o2.smk

2 # -s & -c: short forms of the --snakefile & --cores options

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 25 / 50

Solution

Observe result

Snakemake run the fastqc tool only for the 2nd input file added.

Run again

Run again the snakemake command: snakemake -c1 -s ex1_o2.smk

Why does Snakemake reply "Nothing to be done"?

Solutions

delete the FastQC directory (rm -Rf FastQC) and rerun the
snakemake command

use the Snakemake --forcerules (-R) option:
snakemake -c1 -s ex1_o2.smk -R fastqc

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 26 / 50

Manage all the RNAseq files

Objective 3

Add all the RNAseq files.
Boring with writing all input and output file names?
Use the expand() function to manage all the input RNAseq files at once.

Hint

create a Python list at the begining of the snakefile and containing all
the basename of the input files (don’t include the ”.fastq.gz”
suffix).
Python list: list_name = ["item1", "item2", ..., "itemN"]

replace the filename lists of the input and output directives by the
expand() function

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 27 / 50

Solution

ex1 o3.smk

1 SAMPLES = ["SRR3099585_chr18","SRR3099586_chr18","

SRR3099587_chr18"] # add all 6 samples

2

3 rule fastqc:

4 output:

5 expand("FastQC /{ sample}_fastqc.zip", sample = SAMPLES),

6 expand("FastQC /{ sample}_fastqc.html", sample = SAMPLES)

7 input:

8 expand("Data/{ sample }.fastq.gz", sample = SAMPLES)

9 shell: "fastqc --outdir FastQC/ {input}"

Snakemake run

1 rm -Rf FastQC/

2 snakemake -c1 -s ex1_o3.smk

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 28 / 50

Add a second rule

Objective 4

Add a second rule: this will start a workflow.
The second tool/rule will aggregate all the fastqc results thank to the R
multiqc tool.

Hint

inputs: the fastqc zip files

command: multiqc FastQCResultDirectory

2 outputs: a file multiqc_report.html & a repository
multiqc_data

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 29 / 50

Solution

ex1 o4.smk (copy, run)

1 SAMPLES = ["SRR3099585_chr18","SRR3099586_chr18","

SRR3099587_chr18"]

2

3 rule fastqc:

4 output:

5 expand("FastQC /{ sample}_fastqc.zip", sample = SAMPLES),

6 expand("FastQC /{ sample}_fastqc.html", sample = SAMPLES)

7 input:

8 expand("Data/{ sample }.fastq.gz", sample = SAMPLES)

9 shell: "fastqc --outdir FastQC/ {input}"

10

11 rule multiqc:

12 output:

13 "multiqc_report.html",

14 directory("multiqc_data")

15 input:

16 expand("FastQC /{ sample}_fastqc.zip", sample = SAMPLES)

17 shell: "multiqc {input}"

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 30 / 50

Solution

Observe result

Does Snakemake do the job?
Why wasn’t the fastqc command launched?

rule links

Snakemake run the first rule (fastqc) and stop when the target files are
present.
Solutions ?

put the multiqc rule before the fastqc rule

add a rule that aggregate all the rules of the workflow

Adding a new rule is the choice (could be no link between the rules)

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 31 / 50

The target rule

Objective 5

Add a ”first” rule (named ”all”, ”target”, ...) with the expected results for
all the rules in its input: directive.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 32 / 50

Solution

ex1 o5.smk

1 ...

2 rule all:

3 input:

4 expand (" FastQC /{ sample}_fastqc.html", sample=SAMPLES),

5 "multiqc_report.html",

6 directory (" multiqc_data ")

7 ...

Snakemake run

1 snakemake -c1 -s ex1_o5.smk -R fastqc

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 33 / 50

Solution

Observe result

Does Snakemake do the job?

Fastqc: job or jobs?

Look at more precisely the fastqc job. We have many input files but
snakemake launched only one fastqc job:

It is because the fastqc rule is defined with a list of files and not for one
unique file and because the fastqc tool accepts both a unique file as well
as a list of files.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 34 / 50

Running n individual jobs

Objective 6

Thank to the all rule, all expected files are designated. So we don’t need
to give the fastqc rule a list anymore and we can replace it to manage
only one file and all files one by one. We will gain in power in systems
having more than one core.

Hint

Replace the expand() function with a simple wildcard for the filename in
the fastqc rule.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 35 / 50

Solution

ex1 o6.smk

1 rule fastqc:

2 output:

3 "FastQC /{ sample}_fastqc.zip",

4 "FastQC /{ sample}_fastqc.html"

5 input:

6 "Data/{ sample }. fastq.gz"

7 shell: "fastqc --outdir FastQC/ {input}"

Snakemake run

1 snakemake -c1 -s ex1_o6.smk -R fastqc

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 36 / 50

Solution

Observe result

Now Snakemake did many fastqc jobs:

Parallelize

Rerun with more than one core:

1 snakemake -c3 -s ex1_o6.smk -R fastqc

What happens now to the runtime displays on the screen?
To correct the mixture, we will move the displays to a log file specific for
each rule and each input file.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 37 / 50

Adding log file

Objective 7

In Unix systems, the output of a command is usually sent to 2 separate
streams: the expected output to Standard Out (stdout, or ”>”), and the
error messages to Standard Error (stderr, or ”2>”).
To integrate stderr and stdout into the same log, use ”&>”. But use it
with care because output files are often printed to stdout.

Hint

Redirect the stdout and stderr streams of the fastqc and multiqc rules
by adding a ”log:” directive with two variables, out and err to
separately redirect each streams.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 38 / 50

Solution

ex1 o7.smk

1 # in rule multiqc:

2 log:

3 out="Logs/multiqc.std",

4 err="Logs/multiqc.err"

5 shell: "multiqc {input} 1>{log.std} 2>{log.err}"

6 # in rule fastqc:

7 log:

8 log1="Logs/{ sample}_fastqc.log1",

9 log2="Logs/{ sample}_fastqc.log2"

10 shell: "fastqc --outdir FastQC/ {input} 1>{log.log1} 2>{

log.log2}"

Snakemake run

1 snakemake -c1 -s ex1_o7.smk -R fastqc

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 39 / 50

More ?

Little more on Snakemake

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 40 / 50

Snakemake point

So far, we’ve seen:

the rule and the workflow concepts, the snakefile

how rules are linked thank to input/output files and the first rule, the
target rule

how to generalize the inputs of a rule using wildcards on filenames
(and the expand function)

how to redirect stdout and stderr streams (log)

From now, we will seen some snakemake options:

adding a configuration file

getting file names from the file system

use a conda environment

to visualize the workflow diagram, use a dry-run option, etc

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 41 / 50

Using a configuration file

Why use a configuration file?
To place all hard-coding values of the snakefile (paths to files, core
numbers, parameter values, etc)

How to?

create a file written in yml or json (eg. myConfig.yml)

run with the --configfile myConfig.yml Snakemake option or ii)
add configfile: myConfig.yml at the beginning of the snakefile

in the snakefile, call the defined items with config["item1"]

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 42 / 50

Using a configuration file

myConfig.yml

1 dataDir:

2 Data/

Replace ”Data/...” in inputs by a config call:

1 rule fastqc:

2 input: config [" dataDir "]+"{ sample }. fastq.gz"

And Run with the configfile option:

1 snakemake -c1 -s ex1_o7.smk --configfile myConfig.yml

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 43 / 50

File names from the file system

To deduce the identifiers (eg. IDs) of files in a directory, use the inbuilt
glob_wildcards function:

Eg. of the glob wilcards function

1 IDs , = glob_wildcards (" dirpath /{id}.fastq ")

glob_wildcards() matches the given pattern against the files present in
the file system and thereby infers the values for all wildcards in the pattern
({id} here).

Don’t forget the coma after the name (left hand side, IDs here).

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 44 / 50

Conda environment

Snakemake and conda

In the practical exercise we will have one conda environment for executing
the whole Snakemake workflow.
Snakemake also supports using explicit conda environments on a per-rule
basis:

add a conda: directive in the rule definition :

1 conda: rule -specific -env.yml

run Snakemake with the --use-conda option

The specified environment will be created and activated on the fly by
Snakemake and the rule will then be run in the conda environment.

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 45 / 50

Snakemake DAG visualization

Snakemake uses dot tool (from graphviz package) to create diagrams of
the complete workflow (--dag) or the rules dependencies (--rulegraph):

1 snakemake --dag -s ex1_o7.smk | dot -Tpng > ex1_o7_dag.png

2 snakemake --rulegraph -s ex1_o7.smk | dot -Tpng >

ex1_o7_rule.png

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 46 / 50

Other useful options

Running options

dry-run, do not execute anything, display what would be done:
-n --dryrun

print the shell command: -p --printshellcmds

print the reason for each rule execution: -r --reason

print a summary and status of rule: -D

limit the number of jobs in parallel: -j 1 (cores: -c 1)

automatically create HTML reports (--report report.html)
containing runtime statistics, a visualization of the workflow topology,
used software and data provenance information (need to add the
jinja2 package as a dependency)

all Snakemake options

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 47 / 50

https://snakemake.readthedocs.io/en/stable/executing/cli.html#all-option

Last challenge

Clean, delete and re-run !

We may saved the last version of the snakefile and the config file, clean all
(but the data) and re-run the workflow.

1 cp ex?_o?.smk RNAseq_analysis.smk

2 cp ex?_o?.yml RNAseq_analysis_smkEnv.yml

3 rm -Rf FastQC/ Results/ Logs/ Tmp/ multiqc_*

4 snakemake -c 1 -s RNAseq_analysis.smk --configfile

RNAseq_analysis_smkEnv.yml

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 48 / 50

Snakemake conclusion

Now you can transpose/write any shell script to a snakefile and associate
it to a configuration file.

Power gain

This 2-files solution (snake & config files) will be more powerful when
you apply it in a High Performance Computing environment (like the
IFB cluster) if you arrange to put all paths in the config file

I tune up my snakefile with a reduced dataset (typically the first
10000 reads of each input fastq file) before running the full analysis

For analysis with many data files Snakemake handles error recovery
from unintentional interruptions for us: just rerun the snakemake
command until each file is processed

Reprodicibility issue

In terms of reproducibility, we have to focus on the tools environment

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 49 / 50

Ressources

Official documentation https://snakemake.readthedocs.io/en/stable/

Johannes Koëster publication
https://doi.org/10.1093/bioinformatics/bts480

bioinfo-fr.net https://bioinfo-fr.net (+search snakemake)

begining of a gitbook https://endrebak.gitbooks.io/the-snakemake-book

Céline, Claire (I2BC-IFB) FAIR Bioinfo IFB 2021 50 / 50

	Introduction to workflow
	Exercise: first workflow
	Little more on Snakemake

