Multivariate dimension reduction and kernel methods for biological data integration

Sébastien Déjean, Jérôme Mariette Kim-Anh Lê Cao, Nathalie Vialaneix 27th May 2021

Multivariate methods

Kernel methods

Conclusion

Principal Component Analysis

PCA: the workhorse for linear multivariate statistical analysis is an (almost) compulsory first step in exploratory data analysis to:

- Understand the underlying data structure
- Identify bias, experimental errors, batch effects.

Original variables are replaced by artificial variables (principal components) which explain as much information as possible from the original data and are orthogonal (covariance=0).

In PCA, the variance $==$ information contained in the data.

Prerequișites: Variance

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

Prerequișites: Variance

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

Prerequisitites: Variance

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

Prerequisites: Variance

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

| $X_{1}-\bar{X}$ | |
| :--- | :--- | :--- | :--- | :--- |
| $X_{2}-\bar{X}$ | |
| $X_{3}-\bar{X}$ | |
| $X_{4}-\bar{X}$ | \square |
| $X_{s}-\bar{X}$ | |

Prerequisites: Variance

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

Prerequisites: Variance

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

Prerequisites: Covariance

$$
\operatorname{Cov}(X, Y)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)
$$

The covariance depends on the physical units \rightarrow correlation coefficient

Prerequisittes: Linear combinations of variables

2 variables

Height Weight

174.0	65.6
175.3	71.8
193.5	80.7
186.5	72.6
187.2	78.8
181.5	74.8
184.0	86.4
184.5	78.4
175.0	62.0
184.0	81.6

X

2 coefficients : c1 $=0.5 ; \mathrm{c} 2=2 \quad \mathrm{~W}=\left(\begin{array}{c}0.5 \\ 2\end{array}\right.$

Linear combination of the 2 variables Height and Weight with coefficients c1 and c2

174.0		65.6	218.20
175.3		71.8	231.25
193.5		80.7	258.15
186.5		72.6	238.45
$L C=0.5187 .2$	$+2$	78.8	251.20
LC = 0.5181 .5		74.8	240.35
184.0		86.4	264.80
184.5		78.4	249.05
175.0		62.0	211.50
184.0		81.6	255.20

Matrix notation: LC $=\mathrm{XW}$

Now a 'lärger' data set: the body data set

V1: shoulder girth (cm)
V2 : chest girth (cm)
V3 : waist girth (cm)
V4: weight (kg)
V5 : height (cm)

\rightarrow Graphical overview of these data?
\rightarrow Are all variables needed to summarise the information?

Standard ${ }^{\text {pol }}$ lots in 1D

Weight 65.671 .880 .772 .678 .874 .886 .478 .462 .081 .6

Height 174.0175 .3193 .5186 .5187 .2181 .5184 .0184 .5175 .0184 .0

Standard plots in 2D

Height
Weight
174.0175 .3193 .5186 .5187 .2181 .5184 .0184 .5175 .0184 .0 $\begin{array}{llllllllll}65.6 & 71.8 & 80.7 & 72.6 & 78.8 & 74.8 & 86.4 & 78.4 & 62.0 & 81.6\end{array}$

Standarditlots in 3D

Height 174.0175 .3193 .5186 .5187 .2181 .5184 .0184 .5175 .0184 .0 Weight $\begin{array}{llllllllll}65.6 & 71.8 & 80.7 & 72.6 & 78.8 & 74.8 & 86.4 & 78.4 & 62.0 & 81.6\end{array}$ Waist g $\begin{array}{llllllllll}71.5 & 79.0 & 83.2 & 77.8 & 80.0 & 82.5 & 82.0 & 76.8 & 68.5 & 77.5\end{array}$ Waist g. incm

Alternative to 4D (or more)

PCA: thê 'trick' T G

PCA: thê ttrick'

Summary. The measurements are strongly correlated. Indeed, a person with a high shoulder girth should also have high chest girth (with few exceptions!). Thus, information brought by these 5 variables are redundant. Graphically in 3D (variables shoulder, chest and waist girths), there are empty areas in the cube: a variable (dotted arrow) calculated as a combination of these 3 variables is sufficient to represent the individuals with a minimal loss in information. All points are located along this direction that is the first principal component.

Algebra: : aclinear combination of variables

Seek for the best directions in the data that account for most of the variance. Objective function:

$$
\max _{\|\mathbf{a}\|=1} \operatorname{var}(X \mathbf{a})
$$

Each principal component \boldsymbol{t} is a linear combination of the original variables $(t=X a)$:

$$
\boldsymbol{t}=a_{1} \boldsymbol{x}^{1}+a_{2} \boldsymbol{x}^{2}+\cdots+a_{p} \boldsymbol{x}^{p}
$$

- \boldsymbol{X} is a $n \times p$ data matrix with $\left\{\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{p}\right\}$ the p variable profiles.
- \boldsymbol{t} is the first principal component with max. variance
- $\left\{a_{1}, \ldots, a_{p}\right\}$ are the weights in the linear combination

The datat are projected into a smaller súbspace

- Each principal component is orthogonal to each other to ensure that no redundant information is extracted.
- The new PCs form a a smaller subspace of dimension $\ll p$.
- Each value in the principal component corresponds to a score for each sample
\rightarrow we project each sample into a new subspace spanned by the PCs
- Approximate representation of the data points in a low dimensional space
- Summarize the information related to the variance

PCA is a matrix decomposition

principal components

associated loading vectors

- Components are linear combinations of original variables, and orthogonal to each other.
- Loading vectors indicate the weight (importance) of each variable in the linear combination.

Back to the body data set

Data

	s.g	c.g	w. ${ }^{\text {g }}$	W	h
H 1	106.2	89.5	71.5	65.6	174.0
H 2	110.5	97.0	79.0	71.8	175.3
H 3	115.1	97.5	83.2	80.7	193.5
H 4	104.5	97.0	77.8	72.6	186.5
H 5	107.5	97.5	80.0	78.8	187.2
H 6	119.8	99.9	82.5	74.8	181.5
H 7	123.5	106.9	82.0	86.4	184.0
H 8	120.4	102.5	76.8	78.4	184.5
H 9	111.0	91.0	68.5	62.0	175.0
H 10	119.5	93.5	77.5	81.6	184.0
F 1	105.0	89.0	71.2	67.3	169.5
F 2	100.2	94.1	79.6	75.5	160.0
F 3	99.1	90.8	77.9	68.2	172.7
F 4	107.6	97.0	69.6	61.4	162.6
F 5	104.0	95.4	86.0	76.8	157.5
F 6	108.4	91.8	69.9	71.8	176.5
F 7	99.3	87.3	63.5	55.5	164.4
F 8	91.9	78.1	57.9	48.6	160.7
F 9	107.1	90.9	72.2	66.4	174.0
F 10	100.5	97.1	80.4	67.3	163.8
Mean	108.1	94.2	75.3	70.6	174.4
Var.	68.6	37.5	50.8	85.7	109.3

Covariance matrix

	$\mathrm{s.g}$	$\mathrm{c.g}$	$\mathrm{w.g}$	W	h
Shoulder.g	68.64	37.74	28.08	55.32	61.19
Chest.g	37.74	37.51	33.90	45.70	32.40
Waist.g	28.08	33.90	50.77	56.58	27.70
Weight	55.32	45.70	56.58	85.71	59.52
Height	61.19	32.40	27.70	59.52109 .31	
$68.64+37.51+50.77+85.71+109.31=$	351.94				

351.94 represents the quantity of information contained in the data.

Back to the body data set

```
Coefficients (optimally calculated) to build principal components
\begin{tabular}{lrrrrr} 
& Dim1 & Dim2 & Dim3 & Dim4 & Dim5 \\
shoulder.g & 0.45 & -0.16 & 0.78 & -0.18 & 0.36 \\
chest.g & 0.32 & 0.25 & 0.26 & 0.72 & -0.49 \\
waist.g & 0.34 & 0.53 & -0.33 & 0.24 & 0.66 \\
weight & 0.54 & 0.36 & -0.17 & -0.60 & -0.44 \\
height & 0.54 & -0.70 & -0.43 & 0.17 & 0.02
\end{tabular}
```

```
PC1 = 0.45*shoulder.g + 0.32*chest.g
```

PC1 = 0.45*shoulder.g + 0.32*chest.g
+ 0.34*waist.g + 0.54*weight + 0.54*height
+ 0.34*waist.g + 0.54*weight + 0.54*height
PC2 = -0.16*shoulder.g + 0.25*chest.g
PC2 = -0.16*shoulder.g + 0.25*chest.g
+ 0.53*waist.g + 0.36*weight - 0.70*height
+ 0.53*waist.g + 0.36*weight - 0.70*height
PC3 = ...

```
PC3 = ...
```

		PC1	PC2	PC3	PC4	PC5
Covariance	PC1	255.66	0.00	0.00	0.00	0.00
matrix	PC2	0.00	60.18	0.00	0.00	0.00
PC3	0.00	0.00	23.48	0.00	0.00	
between PCSS	PC4	0.00	0.00	0.00	8.61	0.00
PC5	0.00	0.00	0.00	0.00	4.01	

255.66 is the greatest value of variance that we can obtain on the individuals with a linear combination of the initial variables.

```
255.66 + 60.18+23.48+8.61 + 4.01
```

 \(=351.94\)
 Coordinates of the individuals on the PCs

	Diml	Dim2	Dim3	Dim4	Dim5
H1	-6.50	-4.48	-0.37	-1.03	1.27
H2	4.40	2.04	0.81	1.87	1.38
H3	22.66	-5.94	-6.18	0.11	1.97
H4	7.78	-5.24	-8.38	4.10	-1.74
H5	13.73	-2.67	-8.02	0.82	-2.15
H6	15.67	-0.15	4.49	2.33	4.40
H7	26.99	3.19	6.29	0.04	-3.08
H8	18.41	-3.43	5.63	1.09	-1.96
H9	-6.25	-8.48	4.97	0.79	1.86
H10	16.78	-3.67	1.99	-7.08	1.22
F1	-8.83	-0.78	0.28	-3.02	0.07
F2	-7.28	15.41	-2.31	-3.00	-2.35
F3	-6.45	2.25	-7.60	0.95	1.15
F4	-12.51	2.68	8.91	4.27	-1.53
F5	-3.65	20.76	-0.30	-2.45	1.99
F6	-0.63	-4.62	0.34	-3.46	-2.80
F7	-23.61	-5.07	2.20	1.19	-1.15
F8	-37.50	-9.07	-1.33	-1.89	-0.02
F9	-4.98	-3.61	0.33	-0.50	1.02
F10	-8.24	10.89	-1.74	4.86	0.44
Mean	n	${ }^{0}$	${ }^{0}$.	0
Var.	. 255.7	60.2	23.5	8.61	4.0

The same quantity of information (351.94) is kept but it is "optimally" allocated.

Choosing the parameters in PCA

How many principal components to choose to summarize most of the information?

We can obtain as many components as the rank of the matrix X

- Proportion of explained variance / cumulative prop.
- Screeplot of eigenvalues: any elbow?
- Sample plot: makes sense?

Cumulative proportion of explained variance for the 5 principal components:
PC1 PC1 to $2 \quad \mathrm{PC} 1$ to $3 \quad \mathrm{PC} 1$ to $4 \quad \mathrm{PC} 1$ to 5
$\begin{array}{lllll}0.73 & 0.90 & 0.97 & 0.99 & 1\end{array}$

PCA is aisualisation tool

Sample plot

Variable plot

Biplot

Back to the body data set

		s.g	c. $\overline{\mathbf{g}}$	w.g	w	
H	1	106.2	89.5	71.5	65.6	174.0
H	2	110.5	97.0	79.0	71.8	175.3
H	3	115.1	97.5	83.2	80.7	193.5
H	4	104.5	97.0	77.8	72.6	186.5
H	5	107.5	97.5	80.0	78.8	187.2
H	6	119.8	99.9	82.5	74.8	181.5
H	7	123.5	106.9	82.0	86.4	184.0
H	8	120.4	102.5	76.8	78.4	184.5
H	9	111.0	91.0	68.5	62.0	175.0
H		119.5	93.5	77.5	81.6	184.0
F	1	105.0	89.0	71.2	67.3	169.5
F	2	100.2	94.1	79.6	75.5	160.0
F	3	99.1	90.8	77.9	68.2	172.7
F	4	107.6	97.0	69.6	61.4	162.6
F	5	104.0	95.4	86.0	76.8	151.5
F	6	108.4	91.8	69.9	71.8	176.5
F	7	99.3	87.3	63.5	55.5	164.4
F	8	91.9	78.1	57.9	48.6	160.7
F	9	107.1	90.9	72.2	66.4	174.0
F	10	\bigcirc	97.1	80.4	67.3	

Origin (coordinate $(0,0)$): average individual s.g c.g w.g w h $\begin{array}{lllll}108.1 & 94.2 & 75.4 & 70.6 & 174.4\end{array}$

Variable "epresentation

To obtain the coordinate of each variable: calculate the correlation between the original data and each PC

- correlation between the variable and the $\mathrm{PC}=\cos$ (angle) between the variable vector and the PC
- correlation between two variables $=\cos$ (angle) between 2 vectors

- data centered and scaled in PCA
- $\cos (\alpha)$ close to $1 \rightarrow \operatorname{cor}>0$
- $\cos (\beta)$ close to $0 \rightarrow \operatorname{cor} \simeq 0$
- $\cos (\beta)$ close to $-1 \rightarrow \operatorname{cor}<0$
- PCA is a matrix decomposition technique that allows dimension reduction.
- Perform a PCA first to understand the sources of variation in your data.
- Always report the \% explained variance per component.
- PCA can highlight 'batch effect' in the data and can be used to check that batch-effect removal techniques are efficient.
- Should I scale my data before performing PCA? (scale = TRUE)
- Without scaling: a variable with high variance will solely drive the first principal component
- With scaling: one noisy variable with low variability will be assigned the same variance as other meaningful variables
- Can I perform PCA with missing values?
- NIPALS (Non-linear Iterative PArtial Least Squares - implemented in mixOmics) can impute missing values but must be built on many components. The proportion of NAs should not exceed 20% of total data.
The best thing to do about missing data is not to have any. Gertrude Cox, 1900-1978, American statistician

Going spâkse：principle

－Large number of variables：noisy／irrelevant contribute to the variance \rightsquigarrow PCA difficult to visualise and understand
－Clearer signal if some of the variable weights $\left\{a_{1}, \ldots, a_{p}\right\}$ were set to 0 for the＇irrelevant＇variables（ \sim smallest weiohts）

$$
\boldsymbol{t}=0 * \boldsymbol{x}^{1}+a_{2} \boldsymbol{x}^{2}+\cdots+0 * \boldsymbol{x}^{p}
$$

沄二ニニ
\rightsquigarrow Sparse PCA，sparse PLSDA，sparse PLS．．．

Supervise̛d analysis

Aim: To seek for a linear combination of variables to characterise or separate two or more classes of samples.

Result of a linear multivariate classifier:

- Dimensionality reduction prior to classification.
- A classifier able to predict the class of a new sample based on a linear combination of features.

Multivariate classification approaches:

- Fisher's Linear Discriminant Analysis (LDA)
- Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA includes sample group information

- decomposition of the data matrix X in relation with the outcome y with a set of components and loading vectors for dimension reduction
- Outcome y transformed internally into a dummy matrix (see Table 4.1)

The problem to solve is:

$$
\max _{\|\boldsymbol{a}\|=1,\|\boldsymbol{b}\|=1} \operatorname{cov}(X \mathbf{a}, Y \boldsymbol{b})
$$

$\boldsymbol{t}=X \boldsymbol{a}$ and $\boldsymbol{u}=Y \boldsymbol{b}$ are the PLS-DA components.

Example:
 G

- 63 samples
- expression of $\mathbf{2 3 0 8}$ genes
- class tumour of each sample, 4 classes: 23 Ewing Sarcoma (EWS), 8 Burkitt Lymphoma (BL), 12 neuroblastoma (NB), 20 rhabdomyosarcoma (RMS)

Khan et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6)

Example: PCA first!

Example plSDA (3) ${ }_{0}^{c}$ T

Example Sparse PLSDA T

Sample plots

EWS

- BL
- NB
- RMS

Example Sparse PLSDA T

Variable plots

Contribution on comp 1

Contribution on comp 2
 F

Contribution on comp 3

Example Sparse PLSDA T G

Another variable plot

Two-bloçks integration

Aim: Unravel the relationships between two omics data sets

Multivariate two-blocks integration approaches:

- Canonical Correlation Analysis (CCA), maximise the correlation between linear combination of variables in each data set
- Projection to Latent Structure / Partial Least Squares (PLS), maximise the covariance between linear combination of variables in each data set

Sparse PLS: select co-regulated biological entities across samples

Exampleit putrimouse data set

- 40 mice: 2 genotypes (WT / PPAR α) $\times 5 \operatorname{diets}(*) \times 4$ replicates
(*) Oils used for experimental diets preparation were corn and colza oils (50/50) for a reference diet (REF), hydrogenated coconut oil for a saturated fatty acid diet (COC), sunflower oil for an Omega6 fatty acid-rich diet (SUN), linseed oil for an Omega3-rich diet (LIN) and corn/colza/enriched fish oils for the FISH diet (43/43/14)
- 2 data sets acquired in liver:
- expression of $\mathbf{1 2 0}$ genes
- concentration of 21 fatty acids

Martin, P. G. P. et al. (2007). Novel aspects of PPARÎ \pm-mediated regulation of lipid and xenobiotic metabolism revealed through a multrigenomic study. Hepatology, 54

PCA firstil

($\begin{array}{ccc}C & T \\ 1 & T & T \\ 01 & G\end{array}$

Lipids

Genes

Relationships between lipids and genes?

Pairwise correlations

Package corrplot

PLS - SPRLS

PLS

SPLS

SPLS

Variable representation

N-integeation: a set of component per data set

Block-PLSDA maximises the (weighted) sum of covariances between each pair of data sets and an outcome

Example (Wallomics data set

- 30 samples: 5 ecotypes (Roch, Grip, Hern, Hosp) x 2 temperatures $\times \mathbf{3}$ replicates
- 4 data sets: phenomics (9), metabolomics (7), proteomics (\sim 400), transcriptomics (~ 20000)
H. Duruflé, M. Selmani, P. Ranocha, E. Jamet, C. Dunand, S. Déjean (2018). A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis, doi: https://doi.org/10.1101/35792, bioRxiv

Example a merviced sparse multi-block analysis

Temperature
sPLS-DA par blocs pour la température avec toutes nos données rosettes

Example:潼 a supervised sparse multi-block analysis

Ecotype

sPLS-DA par blocs pour l'écotype avec toutes nos données rosettes

To put ite if if a nutshell

- Multivariate linear methods enables to answer a wide range of biological questions: data exploration, classification, integration of multiple data sets

Principles

PCA max var $(a X) \rightarrow a$?
PLS max $\operatorname{cov}(a X, b Y) \rightarrow a, b$?
CCA $\max \operatorname{cor}(a X, b Y) \rightarrow a, b$?

$$
\text { PLSDA } \rightarrow \text { PLS }
$$

- Variable selection (sparse)

MAX var(t) components

Multi-blocks max $\sum \operatorname{cov}\left(a_{i} X_{i}, b_{j} X_{j}\right) \rightarrow a_{i}, b_{i} ?$

Practicalisession

1. Run the method: MyResult <- pca(X)
2. Represent individuals: plotIndiv(MyResult)
3. Represent variables: plotVar (MyResult)
X. Read the help files: ?pca, ?plotIndiv, ?plotVar...

Multivariate methods

Kernel methods

Conclusion

Prerequisites: dot product

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

$$
K_{i j}=x_{1}^{i} x_{1}^{j}+x_{2}^{i} x_{2}^{j}
$$

Prerequisites: dot product

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

$$
K_{12}=-1.96 \times 0.08+(-0.02) \times 0.22=-0.16
$$

Prerequisitites: dot product

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

$$
K_{13}=-1.96 \times(-0.19)+(-0.02) \times 0.16=0.37
$$

Prerequisites: dot product

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

$$
\begin{gathered}
K_{14}=-1.96 \times 1.98+(-0.02) \times(-0.19)=-3.88 \\
K_{15}=-1.96 \times(-1.55)+(-0.02) \times(-1.17)=3.06
\end{gathered}
$$

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

$K=x x^{T}$ is a kernel: linear kernel

Prerequisitites: dissimilarity measure

Shortest-Path dissimilarity

Prerequisitites: dissimilarity measure

Shortest-Path dissimilarity

Prerequisitites: dissimilarity measure

Shortest-Path dissimilarity

Prerequisitites: dissimilarity measure

Shortest-Path dissimilarity

Prerequisitites: dissimilarity measure

Shortest-Path dissimilarity

Prerequisitites: dissimilarity measure

Shortest-Path dissimilarity

Prerequisitites: dissimilarity measure

Phylogenetic kernel

- Based on the UniFrac distance [?] ;
- Diversity fraction specific to community i and j weighted by the evolution distance between species:

$$
d_{U F}\left(x_{i}, x_{j}\right)=\frac{\sum_{b=1}^{B} I_{b}\left(\mathbb{I}_{\left\{r_{i b}>0, r_{j b}=0\right\}}+\mathbb{I}_{\left\{r_{j b}>0, r_{i b}=0\right\}}\right)}{\sum_{b=1}^{B} I_{b} \mathbb{I}_{\left\{r_{i b}+r_{j b}>0\right\}}}
$$

Prerequisites: dissimilarity measure

Phylogenetic kernel

- Based on the UniFrac distance [?] ;
- Diversity fraction specific to community i and j weighted by the evolution distance between species:

$$
d_{U F}\left(x_{i}, x_{j}\right)=\frac{\sum_{b=1}^{B} I_{b}\left(\mathbb{I}_{\left\{r_{i b}>0, r_{j b}=0\right\}}+\mathbb{I}_{\left\{r_{j b}>0, r_{i b}=0\right\}}\right)}{\sum_{b=1}^{B} I_{b} \mathbb{I}_{\left\{r_{i b}+r_{j b}>0\right\}}}
$$

Prerequisites: kernels

Prerequisitites: kernels

Desired mathematical properties for the similarity
Function $K: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ st:

- symmetry: $K\left(x_{i}, x_{j}\right)=K\left(x_{j}, x_{i}\right)$;
- and positivity: $\forall m \in \mathbb{N}, \forall x_{1}, \ldots, x_{m} \in \mathcal{G}, \forall \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, $\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0$;

Prerequisitites: kernels

Kernel

Desired mathematical properties for the similarity
Function $K: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ st:

- symmetry: $K\left(x_{i}, x_{j}\right)=K\left(x_{j}, x_{i}\right)$;
- and positivity: $\forall m \in \mathbb{N}, \forall x_{1}, \ldots, x_{m} \in \mathcal{G}, \forall \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, $\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0$;

Prerequisitites: kernels

Desired mathematical properties for the similarity
Function $K: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ st:

- symmetry: $K\left(x_{i}, x_{j}\right)=K\left(x_{j}, x_{i}\right)$;
- and positivity: $\forall m \in \mathbb{N}, \forall x_{1}, \ldots, x_{m} \in \mathcal{G}, \forall \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, $\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0$;

Prerequisitites: kernels

Desired mathematical properties for the similarity
Function $K: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ st:

- symmetry: $K\left(x_{i}, x_{j}\right)=K\left(x_{j}, x_{i}\right)$;
- and positivity: $\forall m \in \mathbb{N}, \forall x_{1}, \ldots, x_{m} \in \mathcal{G}, \forall \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, $\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0$;

Prerequisitites: kernels

Desired mathematical properties for the similarity
Function $K: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ st:

- symmetry: $K\left(x_{i}, x_{j}\right)=K\left(x_{j}, x_{i}\right)$;
- and positivity: $\forall m \in \mathbb{N}, \forall x_{1}, \ldots, x_{m} \in \mathcal{G}, \forall \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$, $\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} K\left(x_{i}, x_{j}\right) \geq 0$;

Prerequisites: kernels

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

Prerequisitites: kernels

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

Prerequisites: kernels

	x_{1}	x_{2}	$x_{3}=x_{1}^{2}+x_{2}^{2}$
1	-1.96	-0.02	3.83
2	0.08	0.22	0.05
3	-0.19	0.16	0.06
4	1.98	-0.19	3.96
5	-1.55	-1.17	3.77
6	-0.09	-0.00	0.01
7	0.68	1.62	3.11
8	0.35	0.13	0.14
9	-0.12	-0.32	0.12
10	0.26	-0.06	0.08
11	1.50	1.05	3.36
12	-1.63	1.38	4.55
13	1.44	-1.08	3.23
14	-0.02	-0.15	0.02
15	-0.13	0.33	0.13
16	-0.63	1.95	4.19
17	0.24	-0.02	0.06
18	0.02	-0.18	0.03
19	0.46	-1.80	3.45
20	-0.68	-1.84	3.85

Prerequisites: kernels

	x_{1}	x_{2}	$x_{3}=x_{1}^{2}+x_{2}^{2}$
1	-1.96	-0.02	3.83
2	0.08	0.22	0.05
3	-0.19	0.16	0.06
4	1.98	-0.19	3.96
5	-1.55	-1.17	3.77
6	-0.09	-0.00	0.01
7	0.68	1.62	3.11
8	0.35	0.13	0.14
9	-0.12	-0.32	0.12
10	0.26	-0.06	0.08
11	1.50	1.05	3.36
12	-1.63	1.38	4.55
13	1.44	-1.08	3.23
14	-0.02	-0.15	0.02
15	-0.13	0.33	0.13
16	-0.63	1.95	4.19
17	0.24	-0.02	0.06
18	0.02	-0.18	0.03
19	0.46	-1.80	3.45
20	-0.68	-1.84	3.85

Prerequisites: kernels

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

Gaussian kernel : $K_{i j}=\exp \left(-\gamma\left\|x_{i}-x_{j}\right\|_{\mathbb{R}^{p}}^{2}\right)$

Prerequisitites: kernels

Practical interests

- Represent a natural framework to integrate multiple datasets ;

Prerequisitites: kernels

Practical interests

- Represent a natural framework to integrate multiple datasets ;
- Allow to analyse heterogenous datasets ;

Prerequisitites: kernels

G T
G

Practical interests

- Represent a natural framework to integrate multiple datasets ;
- Allow to analyse heterogenous datasets ;

Prerequisitites: kernels

G T
G

Practical interests

- Represent a natural framework to integrate multiple datasets ;
- Allow to analyse heterogenous datasets ;

Prerequisites: kernels

G

Practical interests

- Represent a natural framework to integrate multiple datasets ;
- Allow to analyse heterogenous datasets ;
- Give acces to a large number of similarity / dissimilarity measures ;

Prerequisites: kernels

Practical interests

- Represent a natural framework to integrate multiple datasets ;
- Allow to analyse heterogenous datasets ;
- Give acces to a large number of similarity / dissimilarity measures ;
- Allow to apply a large panel of methods (kernel trick) : PCA, SOM, linear model, supervised classification, clustering, ...

Prerequisites: kernels

Practical interests

- Represent a natural framework to integrate multiple datasets ;
- Allow to analyse heterogenous datasets ;
- Give acces to a large number of similarity / dissimilarity measures ;
- Allow to apply a large panel of methods (kernel trick) : PCA, SOM, linear model, supervised classification, clustering, ...

Drawbacks

- Algorithm complexity ;
- Loss of model interpretability ;

Exploratơry analysis: kernel PCA

Standard Principal Component Analysis (PCA)

- Projection of high dimensional dataset in a small dimensional space
- Designed so as to keep most of the data variability
- Axes interpretable from a variable and from an observation point of view (axes are linear combinations of the original variables)

Exploratơry analysis: kernel PCA
 G

Standard Principal Component Analysis (PCA)

- Projection of high dimensional dataset in a small dimensional space
- Designed so as to keep most of the data variability
- Axes interpretable from a variable and from an observation point of view (axes are linear combinations of the original variables)

K-PCA [?]

- PCA in the feature space (corresponds to a non linear projection of the original data in the original space)

Exploratöry analysis: kernel PCA

	x_{1}	x_{2}
1	-1.96	-0.02
2	0.08	0.22
3	-0.19	0.16
4	1.98	-0.19
5	-1.55	-1.17
6	-0.09	-0.00
7	0.68	1.62
8	0.35	0.13
9	-0.12	-0.32
10	0.26	-0.06
11	1.50	1.05
12	-1.63	1.38
13	1.44	-1.08
14	-0.02	-0.15
15	-0.13	0.33
16	-0.63	1.95
17	0.24	-0.02
18	0.02	-0.18
19	0.46	-1.80
20	-0.68	-1.84

Exploratơry analysis: kernel PCA

- Generic approach based on random permutations to assess variables influence.

Exploratơry analysis: kernel PCA

 T

- Compute kernel K;
- Kernel PCA.

Exploratơry analysis: kernel PCA

- Variable 1 permutation ;
- Compute kernel \tilde{K}^{1} and the kernel PCA.

Exploratơry analysis: kernel PCA

- Compute the Crone and Crosby distance [?] between K and \tilde{K}^{1} PCA sub-spaces.

Exploratơry analysis: kernel PCA

- Permute all variables and compute the Crone and Crosby distance between K and $\left(\tilde{K}^{j}\right)_{j}$ PCA sub-spaces.

Integratiọñ multiple kernel learning

$$
K^{(*)}=\sum_{m=1}^{M} \beta_{m} K^{(m)} \text { avec } \beta_{m} \geq 0 \text { et } \sum_{m=1}^{M} \beta_{m}=1
$$

- Naive approach: $\beta_{m}=\frac{1}{M}$
- Supervised framework: β_{m} chosen to minimise the prediction error [?]
- Unsupervised framework: combine M kernels dedicated to datasets taking values in an arbitrary space.

Example IARA oceans datasets T

TARA OCEANS

The 2009-2013 expedition

- 48 samples
- 2 depth: surface (SRF) and deep chlorophyll maximum (DCM)
- 31 geographic localisation

Example TARA oceans datasets

8 TARA Oceans datasets:

- phychem physico-chemical data \Rightarrow linear kernel.
- pro.phylo prokaryote phylogenetic tree \Rightarrow kernel based on the weighted Unifrac distance.
- pro.NOGs prokaryotic functional composition \Rightarrow kernel based on the Bray-Curtis dissimilarity.
- euk.pina, euk.nano, euk.micro and euk.meso : eukaryotic composition splited in 4 groups \Rightarrow kernel based on the Bray-Curtis dissimilarity.
- vir.VCs : viral composition \Rightarrow kernel based on the Bray-Curtis dissimilarity.

Example TARA oceans datasets T G

Unsupervised multiple kernel learning de learn the β_{m} coeffecients :

$$
K^{(*)}=\sum_{m=1}^{M} \beta_{m} K^{(m)} .
$$

Example IARA oceans datasets T G

Apply standard data mining methods (clustering, linear model, PCA, ...) in the feature space.

Example TARA oceans datasets T

Correlations between kernels (STATIS)

- Stronger correlations between phychem and small sizes organisms than large sizes organisms ([?] and [?]).

Example TARA oceans datasets T

Example: TARA oceans datasets T

- Large size organisms are the most important: Rhizaria and Alveolata phyla.

Example IARA oceans datasets

- Large size organisms are the most important: Rhizaria and Alveolata phyla.
- SO and SPO epipelagic waters mainly differ in terms of Rhizarians abundances.

Example TARA oceans datasets T

- Large size organisms are the most important: Rhizaria and Alveolata phyla.
- SO and SPO epipelagic waters mainly differ in terms of Rhizarians abundances.
- Both of them differ from the other studied waters in terms of Alveolata abundances.

Practicalisession T

1. Compute kernels: MyKernel <- compute. $\operatorname{kernel}(\mathrm{X})$
2. Combine kernels: MyMetaKernel <- combine. ${ }^{\text {kernnels (K1=Nykernel, ...) }}$
3. Run the method: MyResult <- kernel.pca(MyMetaKernel)
4. Represent individuals: plotIndiv(Myresult)
5. Represent variables: plotvar.kernel.pca(MyResult)
X. Read the help files: ?compute.kerne1, ?kernel.pca, ?plotIndiv, ...

Multivariate methods

Kernel methods

Conclusion

- Practice on your own data! The best way to understand what a method has to tell you
- Do not bypass the elementary analyses (univariate, bivariate, multivariate one data set)
- Address problems explicitly formulated: "I want to integrate my data" is not a problem explicitly formulated
- Clearly identify supervised and unsupervised question and methods to use. "PCA is not a good method, I can't see my clusters..."

