

24/11/2021

Transcriptome *denovo* Assembly **Trinity** Ecole EBAII 2021

ABiMS – Station Biologique Roscoff

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. [link]

Station Biologique de Roscoff A Maturing Paradigm for Transcriptome Research

Station Biologique de Roscoff Research Research

Station Biologique de Roscoff A Maturing Paradigm for Transcriptome Research

Station Biologique de Roscoff APTNS RNA Seq de novo analysis workflow

Data Cleaning

Station Biologique de Roscoff

- Unknown nucleotides
- Bad quality nucleotides
- Adaptors and primers sub-sequences
- Poly A/T tails
- Low complexity sequences
- rRNA sequences
- <u>Contaminant sequences</u>
- Short length sequences

But also:

- Removing singletons
- In-silico normalization
- Sequencing errors correction
 - ...

Bias should be corrected in reverse order of their generation

- 1. Sequencing biases (bad quality, unknowns)
- 2. Library preparation
 - Adaptors and primers sequences
 - Poly A/T tails
- 3. Biological sample (low complexity, rRNA, contaminants)


```
Input Read Pairs: 2 000 000
Both Surviving: 1 879 345 (93.97%)
Forward Only Surviving: 94 153 (4.71%)
Reverse Only Surviving: 18 098 (0.90%)
Dropped: 8 404 (0.42%)
```

TrimmomaticPE: Completed successfully

Euphausia superba (Uwe Kils. 2011)

Euphausia superba (Uwe Kils. 2011)

in-contamination

for ex. rRNA

third-party contamination for ex. food - parasite cross-contamination

for ex. experiment

- Most of (all) Illumina sequencing dataset are somewhat contaminated
- Illumina sequencing is especially susceptible to contamination due to the coverage depth
- It seems inherent to the method
- "Index misassignment between multiplexed libraries is a known issue" (Illumina, Inc., 2018); it potentially can produce contaminations in the sequenced datasets

Thanks to Serafim Nenarokov

Method Open Access Published: 12 May 2020

Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank

Martin Steinegger 🖾 & Steven L. Salzberg

Genome Biology 21, Article number: 115 (2020) Cite this article 6825 Accesses 32 Citations 82 Altmetric Metrics

90-95% of total RNA correspond to rRNA

90-95% of total RNA correspond to rRNA

90-95% of total RNA correspond to rRNA

90-95% of total RNA correspond to rRNA

rRNA contamination

One of the most compon contamination 90-95% of total RNA correspond to rRNA nnotation

Prior to sequencing :

- Ribodepletion kits
- Selection polyA

After sequencing :

- Remove rRNA reads from raw reads
- Detect rRNA transcripts

SortMeRNA


```
>sortmerna -fastx -a 4 -paired out
   \-ref silva-bac-16s-id90
   \-ref silva-arc-16s-id95
   \-ref silva-euk-18s-id95
ш
\-ref silva-bac-23s-id98
Reference
   \-ref silva-arc-23s-id98
   \-ref silva-euk-28s-id98
   \-ref rfam-5s-id98
    \-ref rfam-5.8s-id98
reads
   -reads reads1.fq.gz -reads reads2.fq.gz
output
   -other output mRNA.fastq fastq
   -aligned output aligned.fastq
```

>unmerge-paired-reads.sh output_mRNA.fastq readsortmerna_1.fq read-sortmerna_2.fq

SortMeRNA results

```
Results:
Total reads = 34 \ 196 \ 864
Total reads for de novo clustering = 4 084 914
Total reads passing E-value threshold = 30 122 173 (88.08%)
Total reads failing E-value threshold = 4 074 691 (11.92%)
Minimum read length = 150
Maximum read length = 150
Mean read length = 150
By database:
silva-bac-16s-id90.fasta
                                 6.95%
silva-bac-23s-id98.fasta
                                 18.75%
silva-euk-18s-id95.fasta
                                 9.97%
silva-euk-28s-id98.fasta
                                  52.42%
rfam-5s-database-id98.fasta
                               0.00%
rfam-5.8s-database-id98.fasta 0.00%
```

Total reads passing %id and %coverage thresholds = 26 037 259

Detect rRNA transcripts : RNAMMER

RNAmmer

Station Biologique de Roscoff

> The program uses hidden Markov models trained on data from the 5S ribosomal RNA database and the European ribosomal RNA database project

#								-	
##gff-version2##source-version RNAmmer-1.2##date 2009-11-16									
##Type DNA									
# seqname	source	feature	start	end	score	+/-	frame	attribute	
#								-	
AE000511	RNAmmer-1.2	rRNA	448462	448577	49.2	+		5s_rRNA	
AE000511	RNAmmer-1.2	rRNA	1473564	1473679	49.2	-		5s_rRNA	
AE000511	RNAmmer-1.2	rRNA	1045067	1045183	40.3	+		5s_rRNA	
AE000511	RNAmmer-1.2	rRNA	445339	448223	3056.5	+		23s_rRNA	
AE000511	RNAmmer-1.2	rRNA	1473918	1476803	3032.8	-		23s_rRNA	
AE000511	RNAmmer-1.2	rRNA	1207586	1209074	1801.4	-		16s_rRNA	
AE000511	RNAmmer-1.2	rRNA	1511140	1512627	1803.6	-		16s_rRNA	

Lagesen K, Hallin PF, Rødland E, Stærfeldt HH, Rognes T Ussery DW <u>RNammer: consistent</u> annotation of rRNA genes in genomic sequences

Nucleic Acids Res. 2007 Apr 22.

Alternative Barnap : <u>https://github.com/tseemann/barrnap</u>

> Trinotate-3.0.1/util/rnammer_support/RnammerTranscriptome.pl
--transcriptome Assembly.fasta -org_type (arc|bac|euk) -path_to_rnammer /usr/local/genome2/rnammer/rnammer

>bedtools getfasta -fi Assembly.fasta -bed
rnammer_predictions.gff > trancripts_rrna.fasta

> barnap --kingdom bac --threads 10 --outfasta rrna_bact.fasta
Assembly.fasta

TRANSCRIPTOME ASSEMBLY STRATEGIES

ABMS Trinity – How it works:

ATGE	Chr G	A CONTRACTOR	
RNA-Seq reads	Linear contigs	de-Bruijn graphs	Transcripts + Isoforms

Thousands of disjoint graphs

Decompose all reads into overlapping Kmers (25-mers) and count them : Jellyfish Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers. Extend kmer at 3' end, guided by coverage.

GATTACA 9 T C

GATTACA 9 T C

GATTACA 9 T₀ C

GATTACA 9 C₄ C₄

GATTACA 9 C₄ C₄

Report contig:AAGATTACAGA....

Remove assembled kmers from catalog, then repeat the entire process.

Inchworm can only report contigs derived from unique kmers.

Alternatively spliced transcripts :

- the more highly expressed transcript may be reported as a single contig,
- the parts that are different in the alternative isoform are reported separately.

>a121:len=5845

>a122:len=2560

>a123:len=4443

>a124:len=48

>a125:len=8876

>a126:len=66

Integrate (clustering) Isoforms via k-1 overlaps

Verify via "welds"

ATTO CTT CAAT CAAT AAT AATG ATG. ATC TGAT TCA GATO CA Build de Bruijn Graphs (ideally, one per gene) k-l

C:****>

Typical Trinity command
Trinity --seqType fq --max_memory 50G
\--left A_rep1_left.fq --right A_rep1_right.fq --CPU 4

```
Trinity --seqType fq --max_memory 50G --single single.fq --
CPU 4
```

Running a typical Trinity job requires ~1 hour and ~1G RAM per ~1 million PE reads.

The assembled transcripts will be found at 'trinity_out_dir/Trinity.fasta'.

Result: linear sequences grouped in components, contigs and sequences

>TRINITY_DN889_c0_g1_i1 len=259 path=[473:0-258] [-1, 473, -2] GAACAATGTCTACACTGTCTTCAACTTGGATGACAAGGAACTTTCATTGGCTCAAGCTAA CTACAATTCATCTCTGAAACCAGATATTGAAGAAATCAAGGATACTGTCCCTAGCGCTGT GCTGGCTCCACAATACTACAACACATTCTCAGCTGACCCAACTGCCACTGCAGTCACTGG TAACATCTTTGCACCAGAGGCCACTATGTCCATGGCTGCTCCAGCTAATGCTTCTAGAAA CTCTTCATTAAACTCTCCT

TRINITY_DNW|cX_gY_iZ (until release 2.0 cX_gY_iZ previously compX_cY_seqZ

TRINITY_DNW CX defines the graphical component generated by Chrysalis (from clustering inchworm contigs). Butterfly might tease subgraphs apart from each other within a single component, based on the read support data. This gives rise to subgraphs (gY).: trinity genes

Each subgraph then gives rise to path sequences (iZ). : trinity isoforms

(path) list of vertices in the compacted graph that represent the final transcript sequence and the range within the given assembled sequence that those nodes correspond to.

Trinity statistics

TRINITY_HOME/util/TrinityStats.pl Trinity.fasta

Counts of transcripts, etc. Total trinity 'genes': 7648 Total trinity transcripts: 7719 Percent GC: 38.88 Stats based on ALL transcript contigs: Contig N10: 4318 Contig N20: 3395 Contig N30: 2863 Contig N40: 2466 Contig N50: 2065 Median contig length: 1038 ## Stats based on ONLY LONGEST ISOFORM per 'GENE': Average contig: 1354.26 Total assembled bases: 10453524 Contig N10: 4317 Contig N20: 3375 Contig N30: 2850 Contig N40: 2458 Contig N50: 2060 Median contig length: 1044 Average contig: 1354.49 Total assembled bases: 10359175

Typical Trinity command with multiple samples
Trinity --seqType fq --max_memory 50G --CPU 4
\--left A_rep1_left.fq,A_rep2_left.fq
\--right A_rep1_right.fq,A_rep2_right.fq

sample.txt

cond_A	cond_A_rep1	A_rep1_left.fq	A_rep1_right.fq
cond_A	cond_A_rep2	A_rep2_left.fq	A_rep2_right.fq
cond_A	cond_A_rep3	A_rep3_left.fq	A_rep3_right.fq
cond_B	cond_B_rep1	B_rep1_left.fq	B_rep1_right.fq
cond_B	cond_B_rep2	B_rep2_left.fq	B_rep2_right.fq
cond_B	cond_B_rep3	B_rep3_left.fq	B_rep3_right.fq

Trinity --seqType fq --max_memory 50G --CPU 4
\--samples_file sample.txt

If your RNA-Seq **sample differs sufficiently** from your reference genome and you'd like **to capture variations** within your assembled transcripts

De novo assembly is restricted to only those reads that map to the genome.

The advantage is that **reads that share sequence in common but map to distinct parts of the genome** will be targeted separately for assembly.

The disadvantage is that reads that do not map to the genome will not be incorporated into the assembly.

-> Unmapped reads can, however, be targeted for a separate genome-free de novo assembly.

Genome guided Trinity command Trinity --genome_guided_bam rnaseq_alignments.csorted.bam -max_memory 50G --genome_guided_max_intron 10000 --CPU 6

The assembled transcripts will be found at 'trinity_out_dir/Trinity-GG.fasta'.

contigs.fasta:

fasta file containing error-corrected or circular consensus (CCS) PacBio reads

In short, the Trinity v2.4.0 version uses the pacbio reads mostly for path tracing in a graph that's built based on the illumina reads (not build using illumina AND pacbio).

• Trimming

Trinity --seqType fq --max_memory 50G --CPU 4
--samples_file sample.txt --trimmomatic
--quality_trimming_params "ILLUMINACLIP:illumina.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:5 TRAILING:5 MINLEN:25"

• Trimming

```
Trinity --seqType fq --max_memory 50G --CPU 4
--samples_file sample.txt --trimmomatic
--quality_trimming_params "ILLUMINACLIP:illumina.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:5 TRAILING:5 MINLEN:25"
```

- Normalisation:
 - By definition RNAseq display a wide range of expressions
 Very low expressed → Very highly expressed transcripts
 - The information given by reads from high expression transcripts is redundant, and very high coverage also brings more sequencing errors
 - De-novo assemblers do not benefit from coverage increase beyond a certain point (> 200 millions reads), and fewer data means quicker assemblies
 - ➔ How to decrease coverage of highly expressed transcripts without decreasing that of low expressed transcripts ?

- 1. Count kmers in all the data (Jellyfish):
 - with k = 25
- 2. For each read, compute the median, average and stdev kmers coverage
- 3. Accept a read with a probability of: max coverage/median

3. Accept a read with a probability of:

- e.g. with $max \ coverage = 30$
- Read_A: median coverage = $60 \rightarrow \frac{max_coverage}{median} = 0.5$ → Read A has a 50% chance of being kept
- **Read_B:** median coverage = $10 \rightarrow \frac{max_coverage}{median} = 3$
 - → Read_B has a 300% chance of being kept ;-)
 → Read_B will be kept

3. Accept a read with a probability of:

Reads coming from a highly expressed transcript and are several times more covered than the threshold.

- → Its information is also contained by other reads.
- → So it has less chance to be kept.

Reads coming from a low expressed transcript, way below the threshold.

➔ Its information is not very redondant, need it for the assembly.

→ So it will absolutly be kept

- 1. Count kmers in all the data (Jellyfish):
 - with k = 25
- 2. For each read, compute the median, average and stdev kmers coverage
- 3. Accept a read with a probability of: *maxcov/median*
- Remove a read if: standartdev/average (CV)>1 (100%)

A high variability in a read kmer coverage means there is probably a lot of sequencing errors in this read

\$TRINITY_HOME/util/insilico_read_normalization.pl
\ --seqType fq --JM 1G --max_cov 50
\ --left lib1_1.P.qtrim --right lib2_2.P.qtrim
\ --pairs together --output insil norm ex

1189570 / 1879312 = 63.30% reads selected during normalization. 1094 / 1879312 = 0.06% reads discarded as likely aberrant based on coverage profiles.

Normalization complete. See outputs: insil_norm_ex/lib1_1.P.qtrim.normalized_K25_C50_pctSD200.fq insil_norm_ex/lib1_2.P.qtrim.normalized_K25_C50_pctSD200.fq

Trinity --seqType fq --max_memory 50G --CPU 4
--samples_file sample.txt --trimmomatic
--quality_trimming_params "ILLUMINACLIP:illumina.fa:2:30:10
SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5 MINLEN:25
--normalize_by_read_set

ASSEMBLY QUALITY ASSESSMENT AND CLEANNING

Transcriptome assembly

• Generating Assembly metrics

• Comparing the assembled sequences to the reads used to generate them (reference-free)

 Aligning the sequences of conserved gene domains found in mRNA transcripts to transcriptomes or genomes of closely related species (reference-based).

- The number of contigs in the assembly
- The size of the smallest contig
- The size of the largest contig
- The number of bases included in the assembly
- The mean length of the contigs
- The number of contigs <200 bases
- The number of contigs >1,000 bases
- The number of contigs >10,000 bases
- The number of contigs that had an open reading frame
- The mean % of the contig covered by the ORF

- NX (e.G. N50): the largest contig size at which at least X% of bases are contained in contigs at least this length
- % Of bases that are G or C
- GC skew
- AT skew
- The number of bases that are N
- The proportion of bases that are N
- The total linguistic complexity of the assembly

De novo Transcriptome Assembly is Prone to Certain Types of

Errors

Station Biologique de Roscoff

Smith-Unna et al. Genome Research, 2016

The Assembly is a sum-up.

The realignment rate gives how much of the initial information is inside the contigs.

-> compute percentage of reads mapped

Factors affecting realignment rate:

- Presence of highly expressed genes
- Contamination by building blocks (adaptors)
- Reads quality

Given read pair: Possible mapping contexts in the Trinity assembly are reported:

Alignment methods : bowtie2 -RSEM

\$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq --transcripts Trinity.fasta --est_method RSEM --aln_method bowtie2 --prep_reference --trinity_mode --samples_file samples.txt -seqType fq

Pseudo-Alignment methods : kallisto

\$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq --transcripts Trinity.fasta --est_method kallisto --prep_reference --trinity_mode --samples_file samples.txt --seqType fq

Pseudo-Alignment methods : salmon

\$TRINITY_HOME/util/align_and_estimate_abundance.pl --seqType fq --transcripts Trinity.fasta --est_method salmon --prep_reference -trinity_mode --samples_file samples.txt --seqType fq

Realignment metrics

Assembly evaluation : read remapping

Pseudo-Alignment methods : kallisto (salmon : quant.sf ; quant.sf.genes)

Station Biologique de Roscoff

head cond_A_rep1/abundance.tsv column -t Or head cond_A_rep1/abundance.tsv.genes column -t							
target id	length	eff length	est counts	tom			
TRINITY DN144 c0 g1 $i1$	4833	4703.42	138	16.266			
TRINITY DN144 c0 g2 i1	2228	2098.42	0.000103136	2.72479e-05			
TRINITY DN179 c0 g1 i1	1524	1394.42	227	90.2502			
TRINITY DN159 c0 q1 i1	659	529.534	7.75713	8.12123			
TRINITY DN159 c0 g2 i1	247	119.949	0.24287	1.12251			
TRINITY DN153 c0 g1 i1	2378	2248.42	16	3.9451			
TRINITY_DN130_c0_g1_i1	215	89.2898	776	4818.09			
TRINITY_DN130_c1_g1_i1	295	166.986	216	717.115			
TRINITY_DN106_c0_g1_i1	4442	4312.42	390	50.137			
townet it	1 e e e 1 b						
target_1d	Length	eff_length	est_counts	tpm			
TRINITY_DN2//4_CU_g1 TRINTTY_DN5402 $\approx 0 \approx 1$	2926.00	2/96.42	31.00	6.15			
TRINITY_DN5482_CU_g1	3064.00	2934.42	344.00				
TRINITY_DN6803_C0_g1	1439.00	1309.42	13/9.00	583.85			
TRINITY_DN386_CU_G2	42/9.00	4149.42	3.23	0.43			
TRINITY_DN23_CU_g2	632.00	502.53	9.99	11.02			
TRINITY_DN5348_CU_GI	2091.00	1901.42	204.00	/4.0Z			
$\frac{1}{1}$	2410.00	2200.42	167.00	JJ.09 71 75			
TRINITY_DN4080_CU_GI	1420.00	1290.42	10/.00	/1./5			
TRINITY DN2900 CU GI	283.00	100.12	T.00	3.5/			

\$TRINITY_HOME/util/abundance_estimates_to_matrix.pl
\ --est_method kallisto --out_prefix Trinity_trans
\ --name_sample_by_basedir
\ cond_A_rep1/abundance.tsv
\ cond_A_rep2/abundance.tsv
\ cond_B_rep1/abundance.tsv
\ cond_B_rep2/abundance.tsv

Two matrices,

- one containing the estimated counts,
- one containing the TPM expression values that are cross-sample normalized using the TMM method.

TMM normalization assumes that most transcripts are not differentially expressed, and linearly scales the expression values of samples to better enforce this property.

A scaling normalization method for differential expression analysis of RNA-Seq data, Robinson and Oshlack, Genome Biology 2010.

Often, most assembled transcripts are *very* lowly expressed (How many 'transcripts & genes' are there really?)

* Salamander transcriptome

Compute N50 Based on the Top-most Highly Expressed Transcripts (ExN50)

- Sort contigs by expression value, descendingly.
- Compute N50 given minimum % total expression data thresholds => ExN50

ExN50 Profiles for Different Trinity Assemblies Using Different Read Depths

Note shift in ExN50 profiles as you assemble more and more reads.

* Candida transcriptome

Transrate: understand your transcriptome assembly. <u>http://hibberdlab.com/transrate</u>

Transrate analyses a transcriptome assembly in three key ways:

- by inspecting the contig sequences
- by mapping reads to the contigs and inspecting the alignments
- by aligning the contigs against proteins or transcripts from a related species and inspecting the alignments
 - Assemblies score
 - Contigs score
 - Optimised assemblies score (filter out bad contigs from an assembly, leaving you with only the well-assembled ones)

CEGMA (http://korflab.ucdavis.edu/datasets/cegma/)

HMM:s for 248 core eukaryotic genes aligned to your assembly to assess completeness of

gene space "complete": 70% aligned "partial": 30% aligned

BUSCO(<u>http://busco.ezlab.org/</u>)

Assessing genome assembly and annotation completeness with <u>Benchmarking Universal</u> <u>Single-Copy Orthologs</u>

Datasets (Beta versions, updated sets and additional lineages coming soon)

BUSCO was run in mode: transcriptome EUKARYOTES

C:86.5%[S:48.2%,D:38.3%],F:7.6%,M:5.9%,n:303

262 Complete BUSCOs (C) 146 Complete and single-copy BUSCOs (S) 116 Complete and duplicated BUSCOs (D) 23 Fragmented BUSCOs (F) 18 Missing BUSCOs (M) 303 Total BUSCO groups searched

BUSCO was run in mode: transcriptome PLANT

C:13.9%[S:8.1%,D:5.8%],F:2.0%,M:84.1%,n:1440

200 Complete BUSCOs (C) 117 Complete and single-copy BUSCOs (S) 83 Complete and duplicated BUSCOs (D) 29 Fragmented BUSCOs (F) 1211 Missing BUSCOs (M) 1440 Total BUSCO groups searched

BUSCO limitation

https://github.com/Finn-Lab/EukCC/

Saary, P., Mitchell, A.L. & Finn, R.D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. *Genome Biol* **21**, 244 (2020). https://doi.org/10.1186/s13059-020-02155-4

- Velvet/Oases
 - Velvet (Zerbino, Birney 2008) is a sophisticated set of algorithms that constructs de Bruijn graphs, simplifies the graphs, and corrects the graphs for errors and repeats.
 - Oases (Schulz et al. 2012) post-processes Velvet assemblies (minus the repeat correction) with different kmer sizes.
- Trans-ABySS
 - Trans-ABySS (Robertson et al. 2010) takes multiple ABySS assemblies (Simpson et al. 2009)
- CLC bio Genomics Workstation
- SOAPdenovo-trans,
- rnaSPADES

New de novo transcriptome assemblers

- IDBA-Tran (Peng et al., Bioinf., 2014)
- IDBA-MTP (Peng et al., RECOMB 2014)
- SOAPdenovo-Trans (Xie et al., Bioinf., 2014)
- Fu et al., ICCABS, 2014
- StringTie (Pertea et al., Nat. Biotech., 2015)
- Bermuda (Tang et al., ACM, 2015)
- Bridger (Chang et al., Gen. Biol. 2015)
- BinPacker (Liu et al. PLOS Comp Biol, 2016)
- FRAMA (Bens M et al., BMC Genomics 2016)
- rnaSPAdes (Bushmanova et al., GigaScience 2019)

- Qiong-Yi Zhao et al., Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 2011, 12(Suppl 14):S2
- Clarke, K., Yang, Y., Marsh, R., Xie, L., & Zhang, K. K. (2013). Comparative analysis of de novo transcriptome assembly.
 Science China Life Sciences, 56(2), 156–162. doi:10.1007/s11427-013-4444-x
- (Vijay et al., 2013) Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Molecular ecology. PMID: 22998089
- (Haas et al., 2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols. PMID: 23845962
- (Lu et al., 2013) Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Sci China Life Sci.
- Chen, G., Yin, K., Wang, C., & Shi, T. (n.d.). De novo transcriptome assembly of RNA-Seq reads with different strategies. Science China Life Sciences, 54(12), 1129–1133. doi:10.1007/s11427-011-4256-9
- (He et al., 2015) Optimal assembly strategies of transcriptome related to ploidies of eukaryotic organisms. BMC genomics. DOI: 10.1186/s12864-014-1192-7
- S. B. Rana, F. J. Zadlock IV, Z. Zhang, W. R. Murphy, and C. S. Bentivegna, "Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus," *PLoS ONE*, vol. 11, no. 4, p. e0153104, Apr. 2016.
- (Wang and Gribskov, 2016) Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics. PMID: 27694201
- M. Hölzer and M. Marz, "De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers," Gigascience, vol. 8, no. 5, pp. 57–16, May 2019.
- Sadat-Hosseini et al. (2020) Combining independent *de novo* assemblies to optimize leaf transcriptome of Persian walnut. PLoS ONE 15(4): e0232005. <u>https://doi.org/10.1371/journal.pone.0232005</u>

Assemblers comparison

GigaScience, Volume 8, Issue 5, May 2019, giz039, https://doi.org/10.1093/gigascience/giz039

The content of this slide may be subject to copyright: please see the slide notes for details.

GigaScience, Volume 8, Issue 5, May 2019, giz039, https://doi.org/10.1093/gigascience/giz039

The content of this slide may be subject to copyright: please see the slide notes for details.

Titre

New strategies

DRAP, EvidentialGene, Concatenation, ConSemble, TransPl.

Exploit the result of different assemblers run in parallel and choose the best solution

- Cabau C, Escudié F, Djari A, Guiguen Y, Bobe J, Klopp C. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ. 2017 Feb 16;5:e2988. doi: 10.7717/peerj.2988. PMID: 28224052; PMCID: PMC5316280.
- Gilbert DG. Genes of the pig, Sus scrofa, reconstructed with EvidentialGene. PeerJ. 2019;7:e6374.
- Cerveau N, Jackson DJ. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. BMC Bioinform. 2016;17(1):525.
- Voshall, A., Behera, S., Li, X. et al. A consensus-based ensemble approach to improve transcriptome assembly. BMC Bioinformatics 22, 513 (2021). https://doi.org/10.1186/s12859-021-04434-8
- R.E. Rivera-Vicéns, C.A. Garcia-Escudero, N. Conci, M. Eitel, G. Wörheide. TransPi a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly. doi: https://doi.org/10.1101/2021.02.18.431773