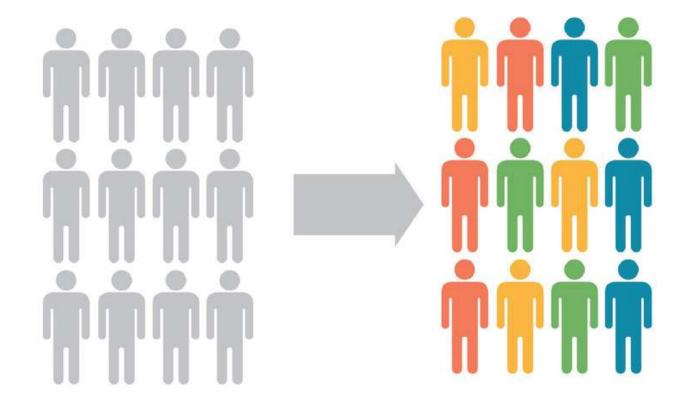


Laura Cantini

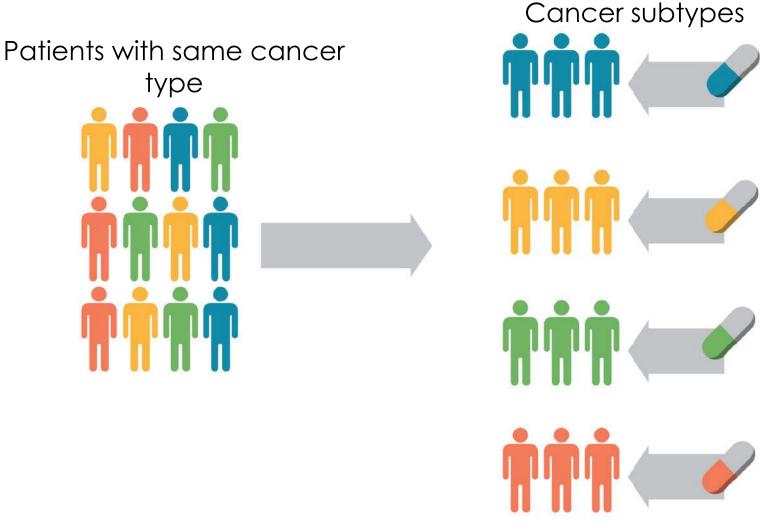
Computational Systems Biology Team IBENS, Paris

Personalized cancer medicine

Patients with same cancer type don't have the same survival, treatment response and molecular characteristics

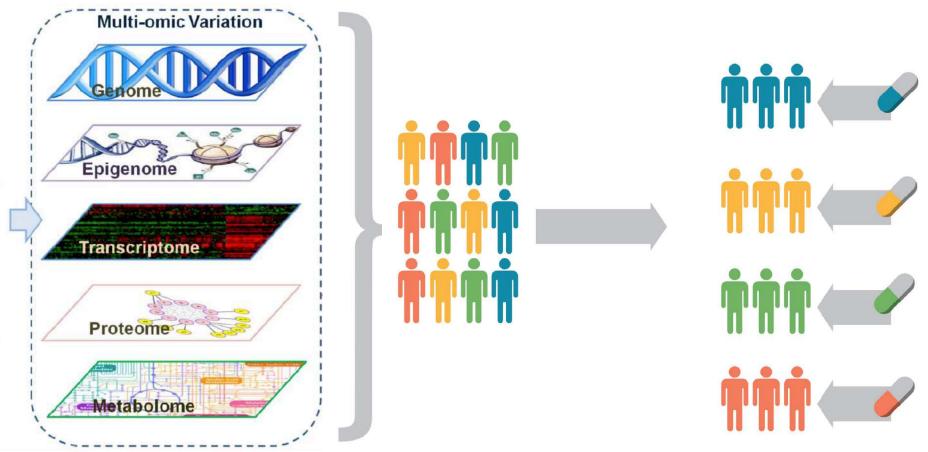


Personalized cancer medicine



Classify cancer patients into groups with similar prognosis, drug response or molecular features

Multi-omics data available

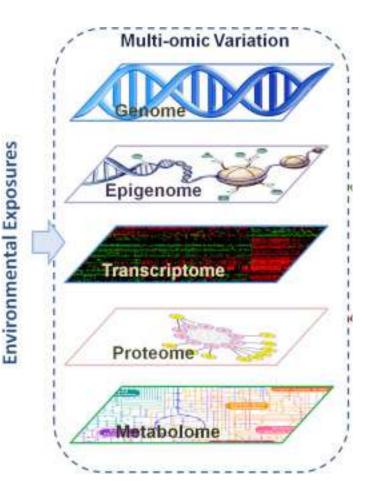


Environmental Exposures

The Cancer Genome Atlas (TCGA) for example contains data from 10.000 patients, 33 cancer types, 6 omics, plus clinical data

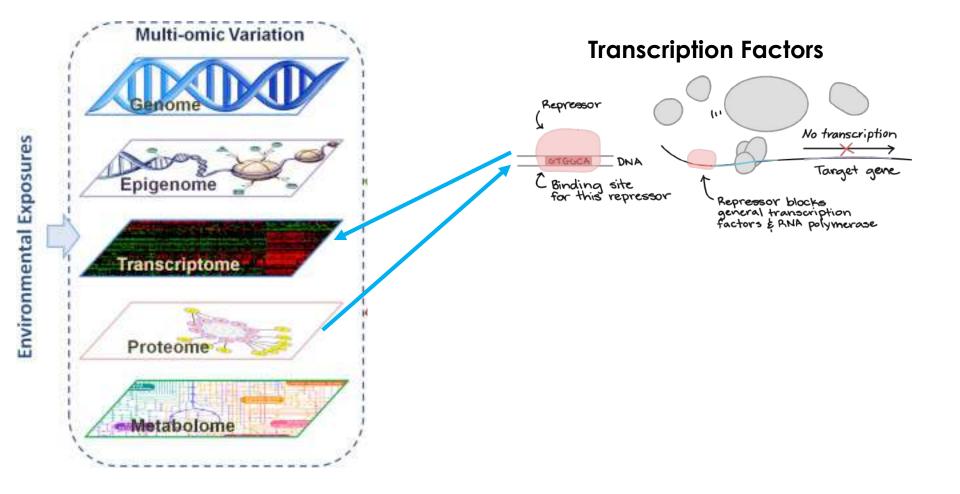
The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi:10.1038/ng.2764

Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases." Advances in genetics. Vol. 93. Academic Press, 2016. 147-190.



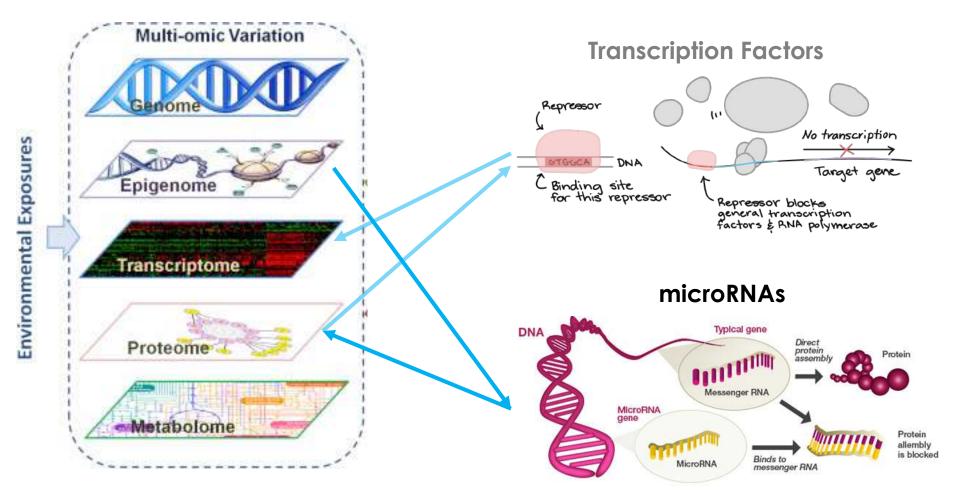
The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi:10.1038/ng.2764

Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases." Advances in genetics. Vol. 93. Academic Press, 2016. 147-190.



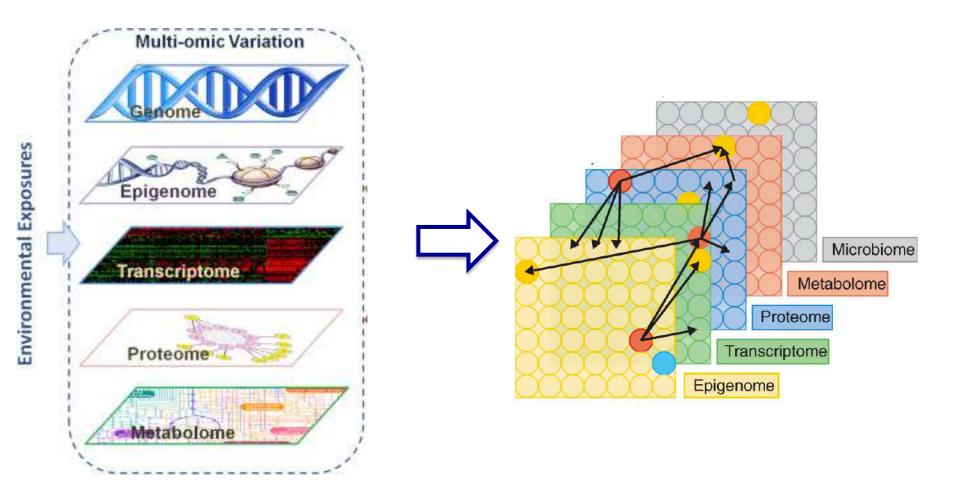
The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi:10.1038/ng.2764

Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases." Advances in genetics. Vol. 93. Academic Press, 2016. 147-190.



The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi:10.1038/ng.2764 Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases." *Advances in genetics*. Vol. 93. Academic Press, 2016. 147-

Sun, Yan V., and YI-Juan Hu. Integrative analysis of multi-omics data for discovery and functional studies of complex numan diseases. Advances in genetics. Vol. 93. Academic PI 190.



The joint analysis of multiple omics is required

The Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.M., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. doi:10.1038/ng.2764 Sun, Yan V., and Yi-Juan Hu. "Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases." *Advances in genetics*. Vol. 93. Academic Press, 2016. 147-190.

Challenges of multi-omics integration

High-dimensionality -> Big-data

Heterogeneous variables

Different ranges of variation

Technical noise different for each omics

More omics is better, but how many more?

Is it always good to consider ALL the available omics?

Aim: predicting drug response

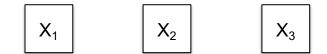
Available input data:

- Mutations
- Copy Number Alterations (CNA)
- Methylation
- Gene expression
- Proteomics
- Cancer types
- Drug response

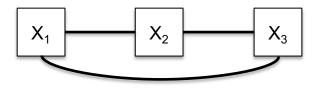
Aim: predicting drug response

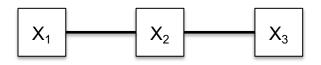
Available input data:

- Mutations
- Copy Number Alterations (CNA)
- Methylation
- Gene expression
- Proteomics
- Cancer types
- Drug response



Using correlation:



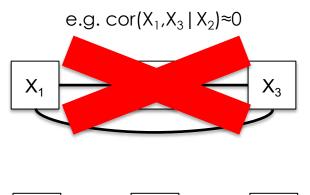


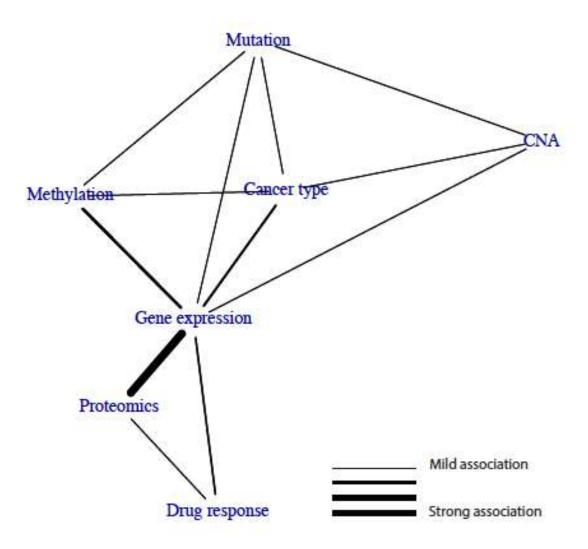
Aim: predicting drug response

Available input data:

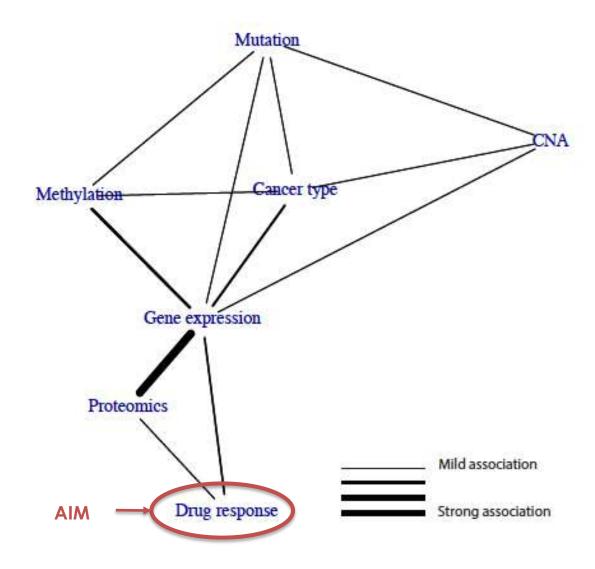
- Mutations
- Copy Number Alterations (CNA)
- Methylation
- Gene expression
- Proteomics
- Cancer types
- Drug response

Using partial correlation (iTOP):

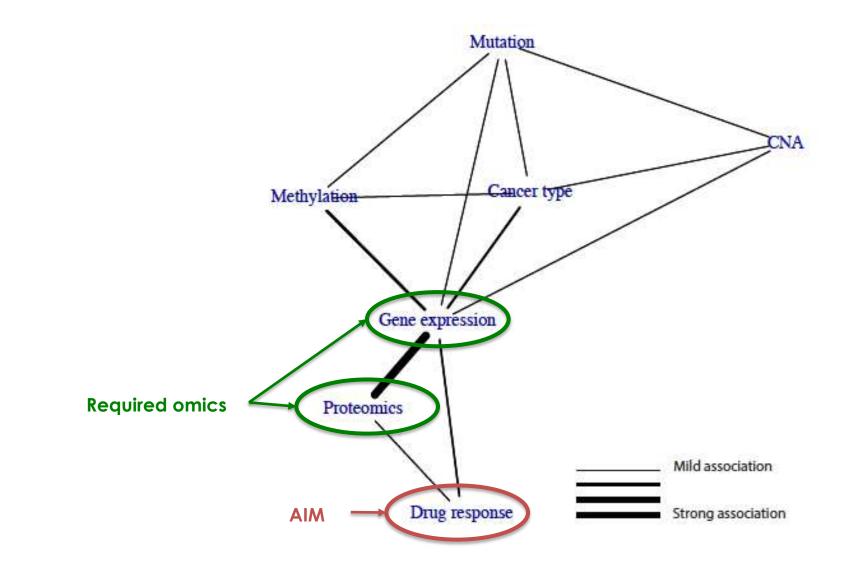




ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.



ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.



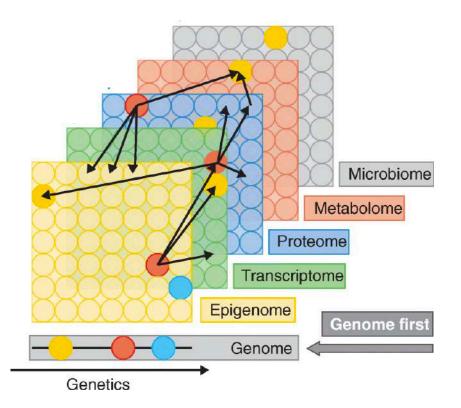
ABEN, Nanne, et al. iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34.17: i988-i996.

How the omics should be combined?

Approach "Genome First"

Priority given to genome

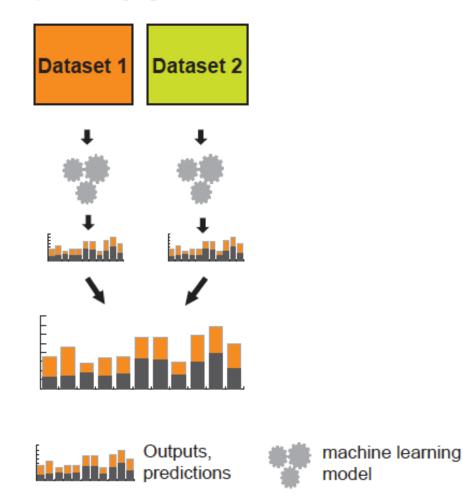
Other omics are only used for interpretation

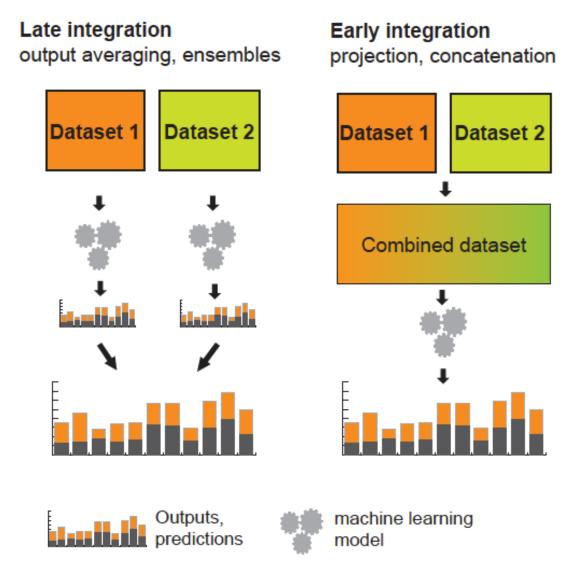


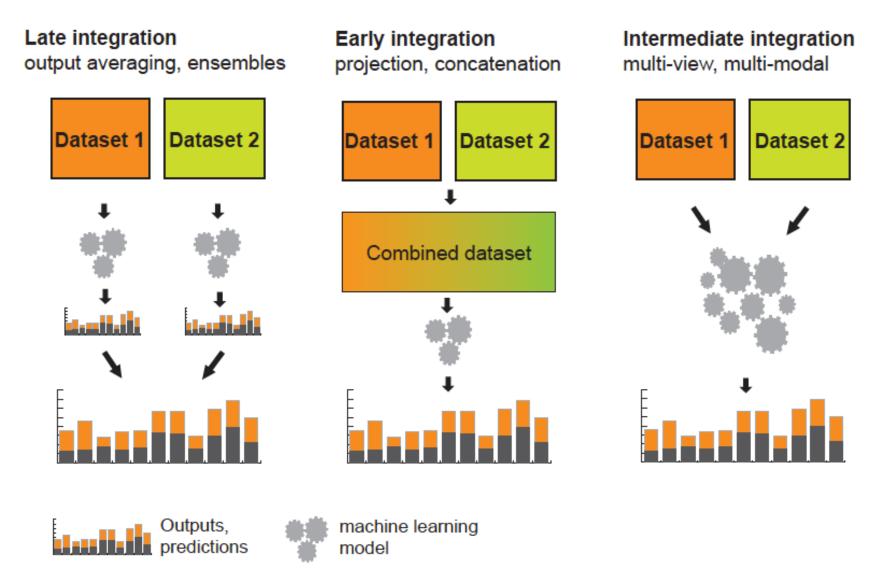
Machine learning algorithm designed for a single dataset

Late integration

output averaging, ensembles



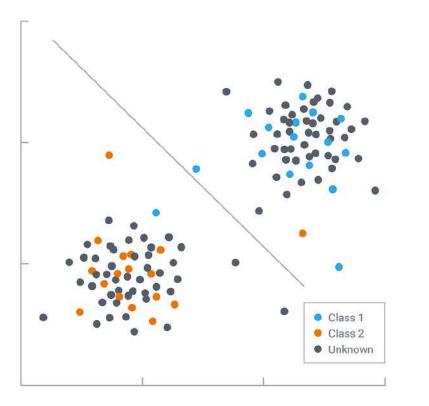




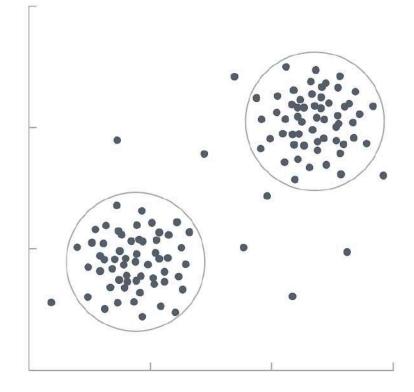
Main categories of existing multi-omics integrative approaches

Main categories of integrative approaches

Supervised methods

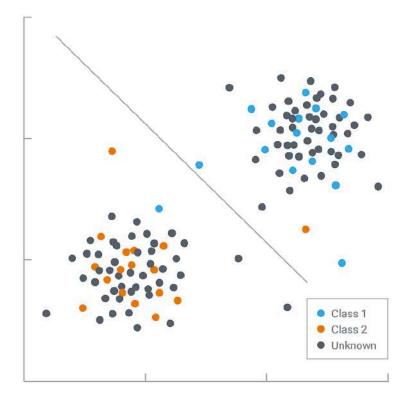


Unsupervised methods



Main categories of integrative approaches

Supervised methods

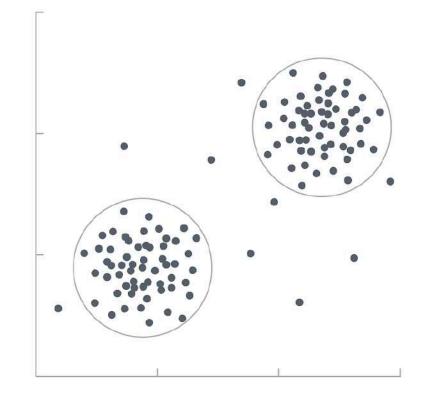


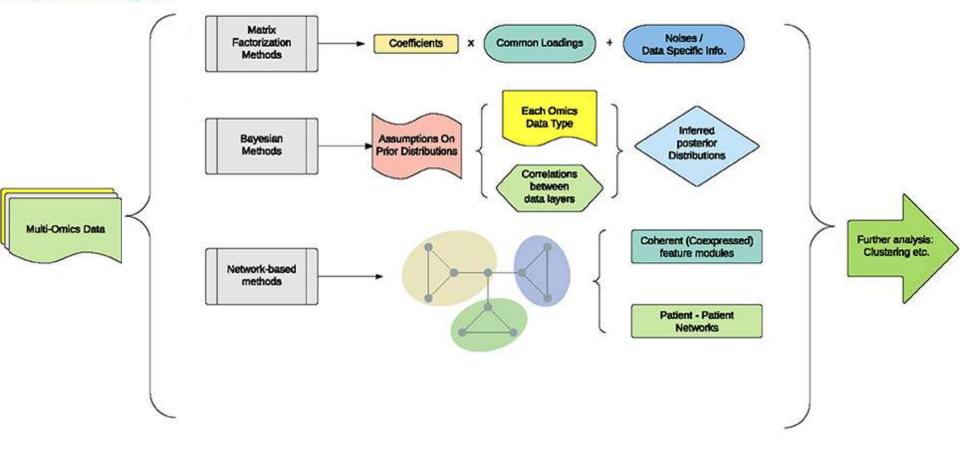
- They require 2 datasets in input: training and test datasets
- Labels must be avilable for the training dataset
- This information is used to infer labels on the test dataset

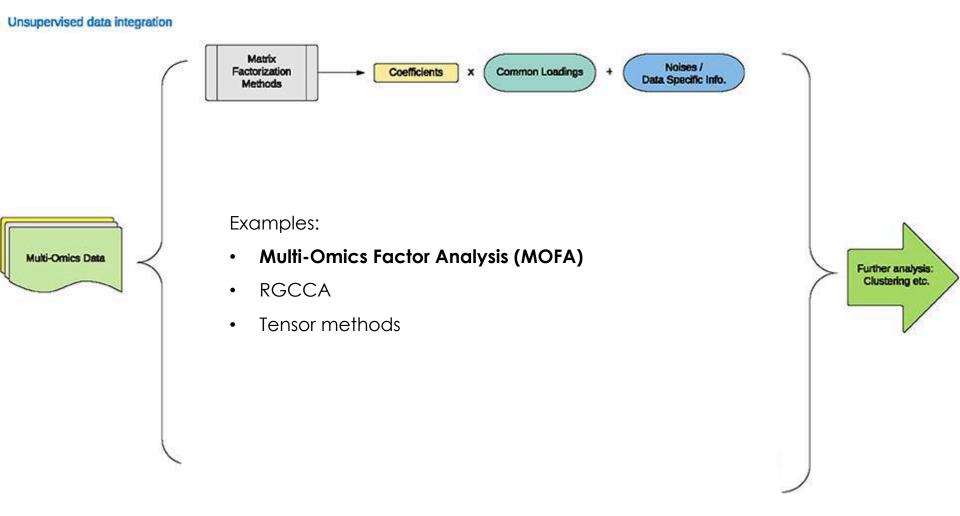
Main categories of integrative approaches

Unsupervised methods

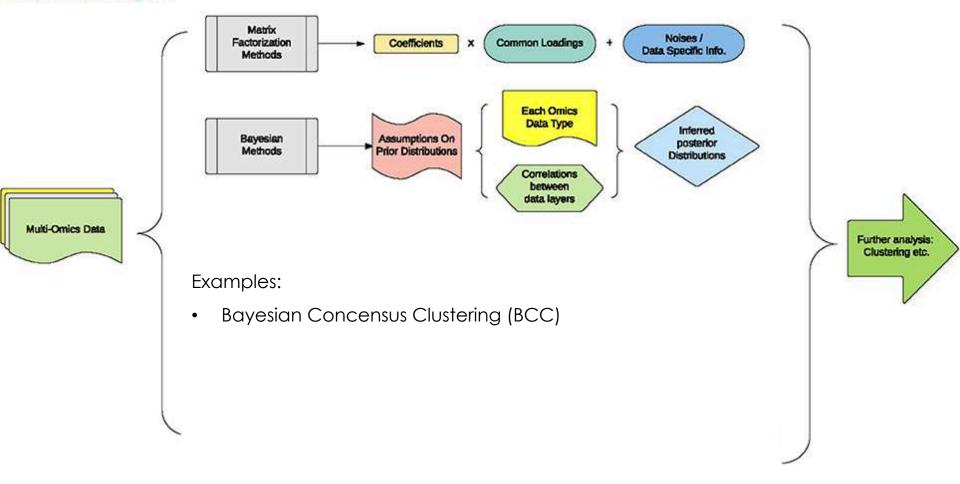
- The methodology is directly applied to one dataset
- They infer information from the structure of the data without any label information



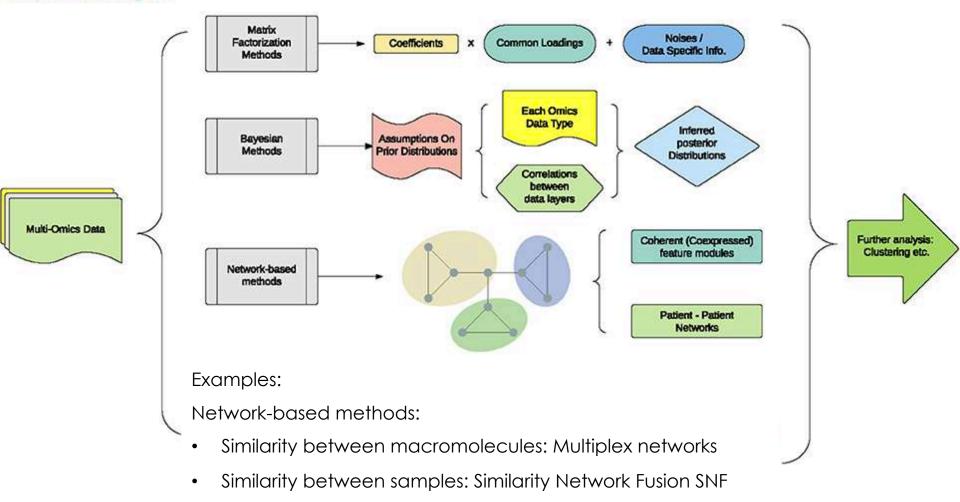




Unsupervised data integration

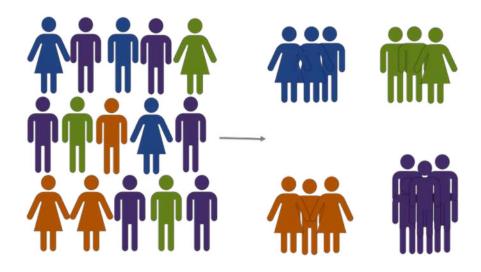


Unsupervised data integration



Cancer insights from data integration methods

Cancer subtyping

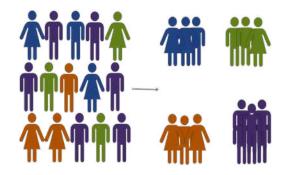


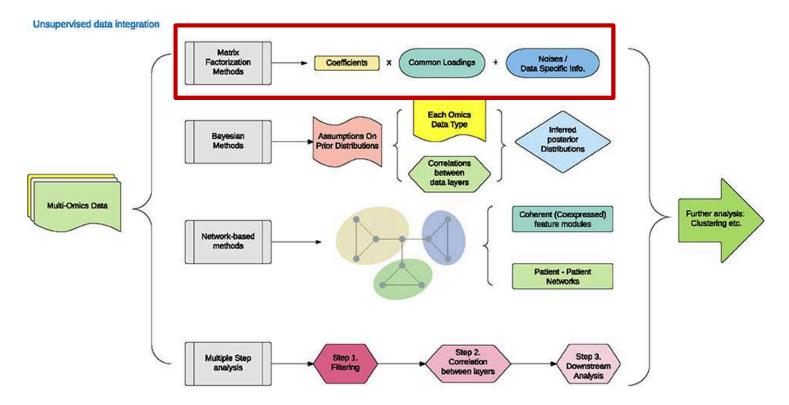
CMS1 (13%)	CM52 (35%)	CM53 (11%)	CMS4 (20%)	Unclassified (21%)
 Right colon, female MSI, BRAF mut, hypermutated Immune activation Worse survival after relapse 	 Left colon MSS, CIN, BRAF wt, TP53 mut Epithelial, WNT/Myc pathway activation Better survival after relapse 	KRAS mut Epithelial, IGFBP2 overexpression	 Mesenchymal, TGFβ pathway activation, NOTCH3 overexpression Worse relapse free survival and overall survival 	 Immune and stroma infiltration Variable epithelial - mesenchymal activation
C2 Subtype 1.2 A-type CCS2 Inflammatory	C1-C5-C6 Subtype 2.2 B CCS1 Enterocyte-TA	C3 Subtype 2.1 Globet-like A	C4 C-type Subtype 1.1-1.3 CCS3 D-E Stem-like	

Santos, Cristina, et al. "Intrinsic cancer subtypes-next steps into personalized medicine." Cellular oncology 38.1 (2015): 3-16.

Cancer subtyping

This problem is generally approached with unsupervised approaches.



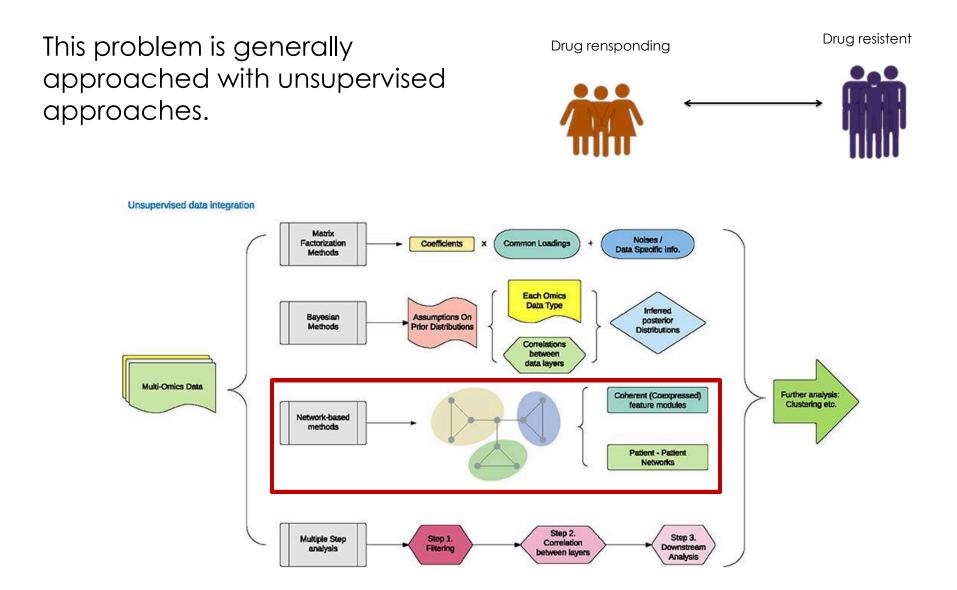


Gene modules identification

Which are the molecular mechanisms that make these two groups of patients having a different behaviour?

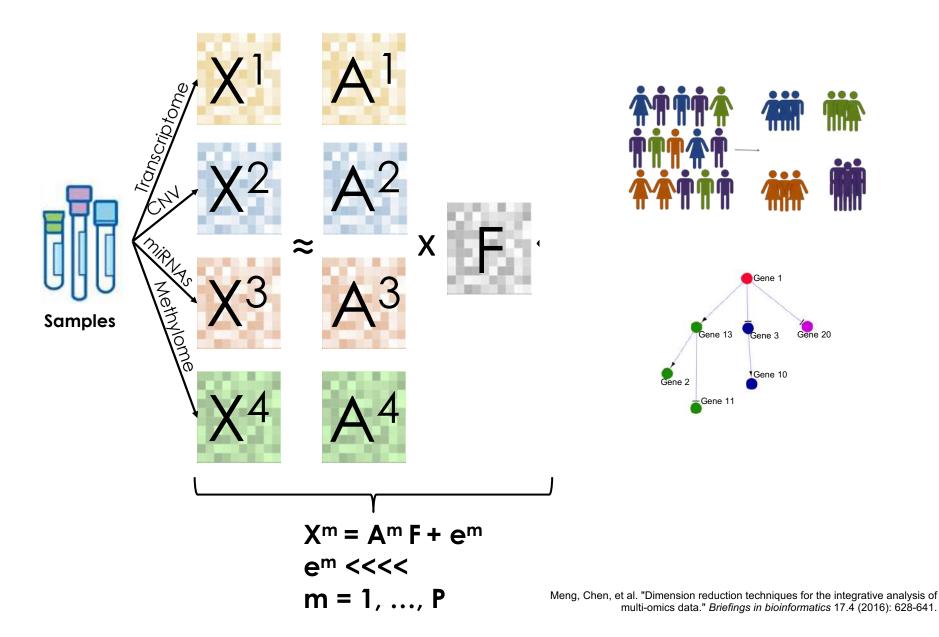
Can we identify a driver that can alter the behaviour of a set of patients?

Gene modules identification



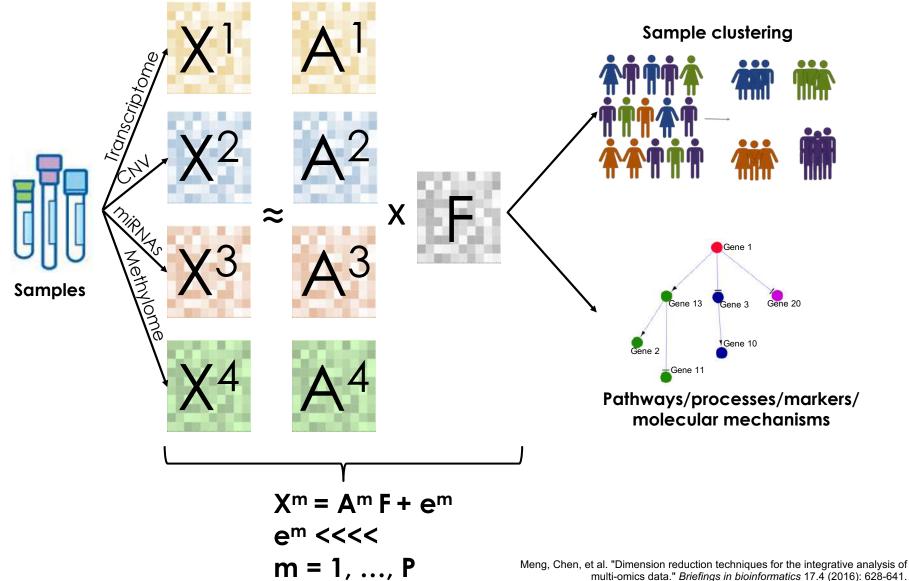
Matrix Factorization

Joint Dimensionality Reduction (jDR)

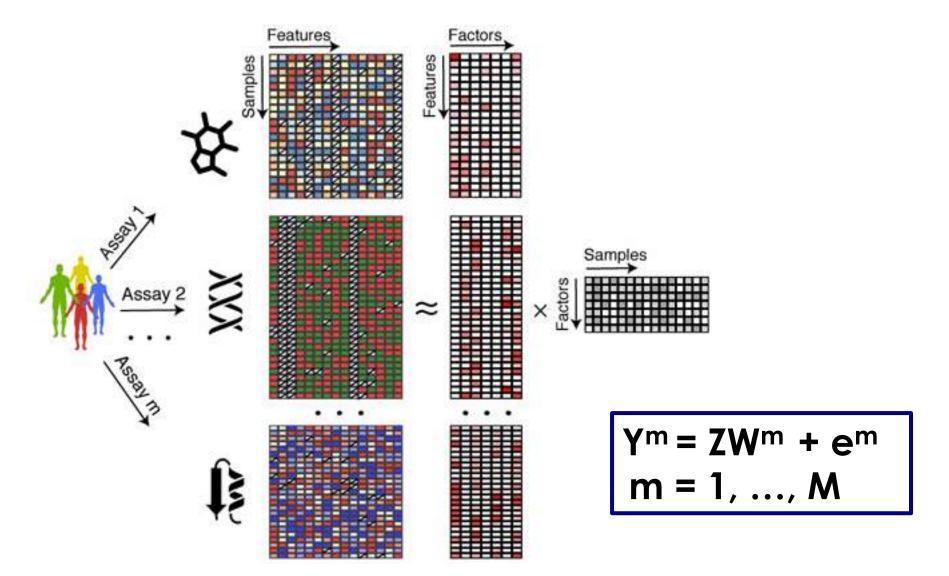


Joint Dimensionality Reduction (jDR)

Multi-omics joint Dimensionality Reduction (jDR)

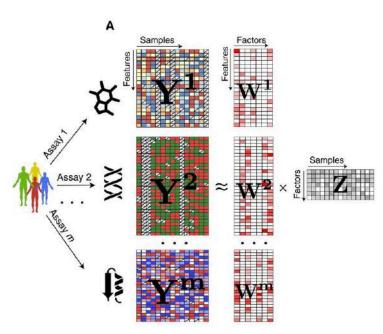


Multi-omics Factor Analysis (MOFA)

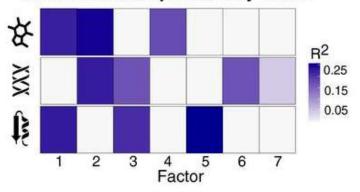


Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.

MOFA advantage: interpretability of factors

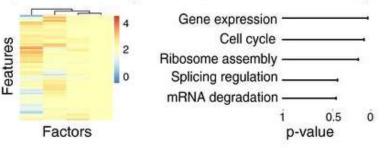


Variance decomposition by factor



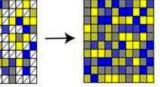
Annotation of factors

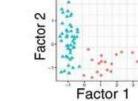
Inspection of loadings Feature set enrichment analysis



Imputation of missing values

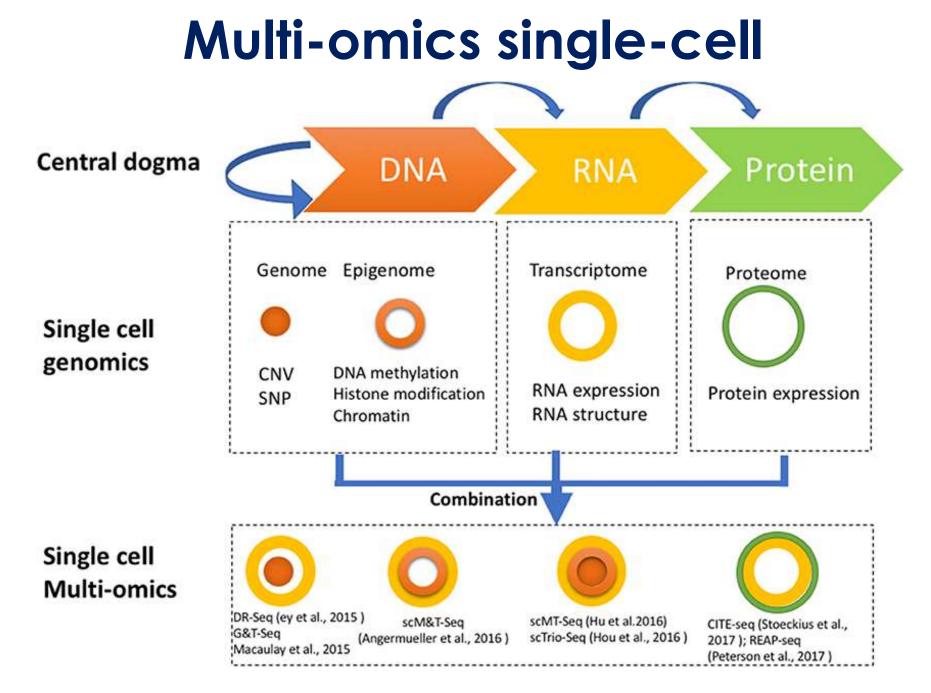
Inspection of factors





Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.

Also single-cell multi-omics data can be integrated with matrix factorization



Hu, Youjin, et al. " Frontiers in cell and developmental biology 6 (2018): 28.

Example MOFA application single-cell multi-omics

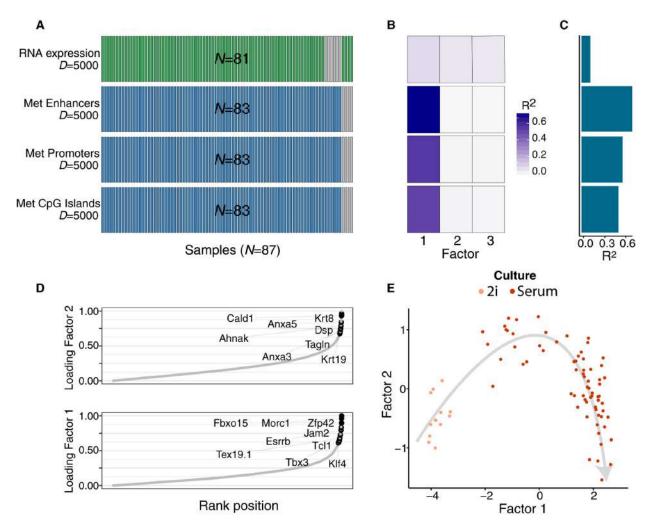
Dataset: 87 mouse embryonic stem cells (mESCs) comprising:

- 16 cells cultured in "2i" media, which induces a naive pluripotency state
- 71 serum-grown cells, which commits cells to a primed pluripotency state poised for cellular differentiation.

All cells were profiled using single-cell methylation and transcriptome sequencing

Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.

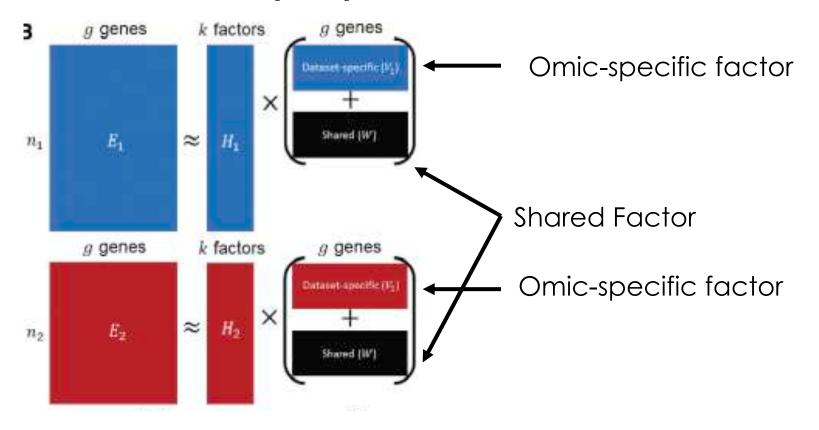
Example MOFA application single-cell multi-omics



Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.

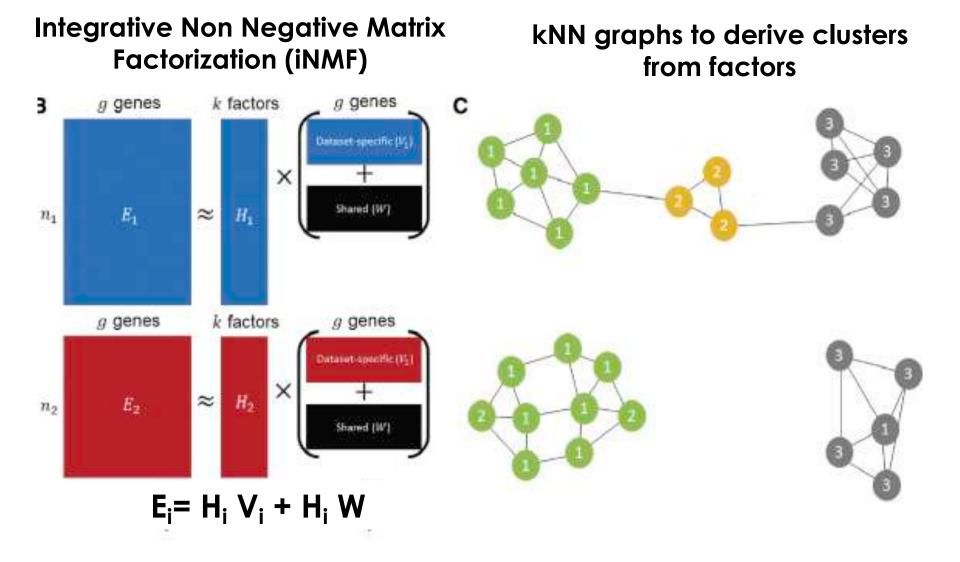
Linked inference of genomic experimental relationships (LIGER)

Integrative Non Negative Matrix Factorization (iNMF)



$E_i = H_i V_i + H_i W$

LIGER: multi-omics clustering

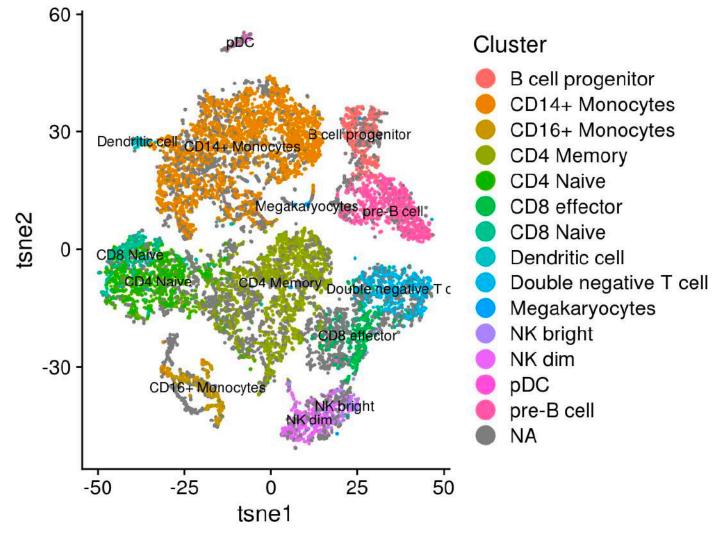


LIGER: peripheral blood mononuclear cell (PBMC)

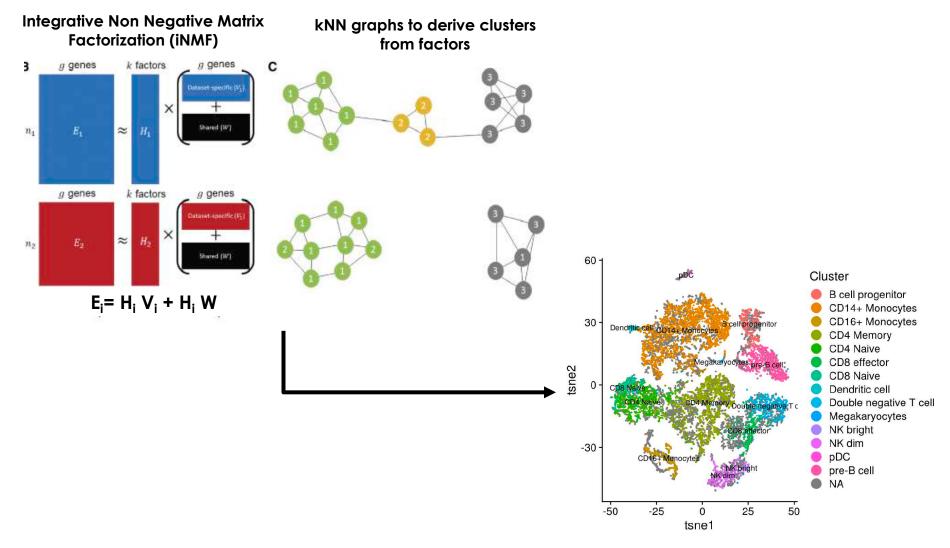
scRNAseq and scATACseq data from approx. 10k cells PBMCs

We want to identify subtypes of cells based on the joint analysis of the two data types

LIGER: peripheral blood mononuclear cell (PBMC)



Pay attention this is not a TSNE plot of scRNAseq data



LIGER: peripheral blood mononuclear cell (PBMC)

