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> Pangenomics inspired by linguistic

The pangenomic concept to measure genomic diversity and

stability (core and accessory genomes)
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Heaps’ Law is an empirical law that describes
the number of distinct words in a document as an increasing
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> What does pangenome mean?

# of “pangenome” or “pan-genome” occurrences

From an approach to measure
genomic biodiversity...
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... to methods for managing
graphs of ever-increasing
genomic sequences

2025

Garrison et al., 2018
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> Methods to handle ever-increasing genomic sequences

Pangenomics now deeply relies on pangenome graphs:

— pangenome graphs tries to compile all the possible (or at lest as much as possible) genomic
variations sampled in a population in a graph (DBG, variation graphs..).

— But each day, genomic information became and more abundant, so these graphs grew
tremendously complex !

==> Efforts to optimize these graphs and make them computationally manageable open up a
significant area of research
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> What to learn from Natural Language Processing ?

Instead of building graphs of all combinations of words in
sentences, research in linguistics, especially Natural
Language Processing (NLP) now relies on Large Language
Models (LLMSs) to capture the relationships between words
(more generally lexical tokens) in the language

These models, composed of billions of parameters, are pre-
trained on vast datasets and can capture complex linguistic
structures and semantics without explicitly mapping out all
possible combinations.

Then, these models are fine-tuned (Brown et al., 2020) to a
wide range of downstream tasks (e.g.: chat bots)
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> Pangenome and Al

It is uncertain whether constructing increasingly larger pangenome graphs using sophisticated
data structures and algorithms is the best approach to deciphering and understanding biology

* Instead, due to the open-ended nature of genetic diversity (much like language ?)constructing
pangenomes as large foundational models could help to model and capture unknown genomic
relationships until now.

In other words, Is pangenome the concept of a Foundation Model ?
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> |A and Large Language Models

Back to the basics



> Al legal definition (Al act)

Article 3

Definitions

For the purposes of this Regulation, the following definitions apply:

(1) ‘Al system’ means a machine-based system that is|designed to operate with varying levels of

autonomy

and that may

exhibit adaptiveness

after deployment, and that, for explicit or implicit

objectives, infers, from the input it receives, how to generate outputs such as|predictions, content,

recommendations, or decisionsl that can influence physical or virtual environments;
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> Transformer Architecture « Attention Is All You Need »

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Gioogle Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* 1 Eukasz Kaiser
Google Research University of Toronto Gioogle Brain
1llien@google . com aidan@cs. toronto. edu lukaszkaiser@google. com

Olia Polosukhin® !
illia.polosukhin@gmail . com

Abstract

The dominant sequence transduction models are based on complex recurrent or
comwvolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer.
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WM'T 2014 English-
to-German translation task, improving over the existing best results. including
ensembles, by over2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of -the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUSs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applyving it successfully to English constituency parsing both with
large and limited training data.
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become one of the most cited
articles (>180k)

Design for translation purposes
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> The intuition of attention: look at everything, but not equally

Instead of translating word-by-word, attention looks at which
English words are important for each French word

Important
Comment Se passe ta journee
Y A
| n T

|
—

Unimportant

O N A

How was your day

Attention finds what is most important in context to understand the actual meaning of each token
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token

> « Attention Is All You Need »

During my travel to the city of Barcelona , my favorite relative and | explored vibrant streets
Given a prompt: untii our legs , the most tired body part , be gged for rest . We found a tiny café , shared
local food , and laughed until the feeling of exhaust i on melted into joy . Some moments

live forever in memory .

Ruler, 2016
https://www.ruder.io/
word-embeddings-1/
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token

> « Attention Is All You Need »

During my travel to the city of Barcelona , my favorite relative and | explored vibrant streets
Giveﬂ a prompt: untii our legs , the most tired body part , be gged for rest . We found a tiny café , shared

local food , and laughed until the feeling of exhaust i on melted into joy . Some moments

1 Attention weights

TN » Passes through dozens of
v transformer layers.
)

vector dimensionality of K, V

live forever in memory .

Attention(q, k,v) = softmax(
VA"

from to

Billons of trained

weights in the model « Each layer captures more

and more information about
the links between tokens

am=Esxomnznrx-

Feed forward
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token

> « Attention Is All You Need »

During my travel to the city of Barcelona , my favorite relative and | explored vibrant streets

Given a pI’Ompt: untii our legs , the most tired body part , be gged for rest . We found a tiny café , shared
local food , and laughed until the feeling of exhaust i on melted into joy . Some moments
live forever in memory .
T 1 Attention weights
R EDN o Passes through dozens of
A | Attention(q,k,v) = softmax( )v transformer layers.
_ _ S VA" . Vi
Billons of trained E rom o vector dimensionality of K, V Each |
weights in the model o | * FEach layer captures more
R 7 and more information about
M . the links between tokens
E X
Tokens represented in a R 7 ©
multidimensional space EnCOder-OnI Feed forward
« embeddings » y
, Encoder- \ Decoder-only
a1 v Decoder
s _ _ The sun dipped below the
; Lors de mon voyage dans la ville de Barcelone , mon parent préféré et moi avons parcour u
¢ ] ; des rues anim ées jusqu ' @ ce que nos jambes , la partie du corps la plus fatigu ée , rOOftOpS ; CaSting go|den |Ight on

récla ment du repos . Nous avons trouvé un petit café , partagé des spécial ités locales et ri

Ruler, 2016
https://www.ruder.io/ T R : "
word-embeddings-l/ da Jamals grav es en memoire .
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jusqu ' @ ce que le sentiment d ' é pu isement se transforme en joie . Certains instants restent
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our table , as music played softly

and strangers smiled passing by

Predicts next tokens | |



> Self-supervised learning to build foundational models
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Computationally

Intensive !!!

> Self-supervised learning to build foundational models

1. Pre-training
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> Self-supervised learning to build foundational models

1. Pre-training

Computationally
Intensive !

2. Evaluation / refinement /
specialisation

Expert guidance
highly required
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https://www.youtube.com/watch?v=pjej9niIsV3E

> Self-supervised learning to build foundational models

Two self-supervised learning strategies.

1. Pre-training

Output Output
= Causal Masked
S Language Language
F ngua e o
§§ (e.g.: GPT) (e.g.: BERT)

c
o - 1
O Input: | Input
>Unidiréetionak(leftd sezight) : Bidirectional

2. Evaluation / refinement /
specialisation

S o
c O
c =
T >
> 2
T >
8_5

(@)

What genomics can learn from Natural Language Processing?
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https://www.youtube.com/watch?v=pjej9niIsV3E

> Self-supervised learning to build foundational models

Two self-supervised learning strategies:

1. Pre-training

Output Output
Causal Masked
Language Language
Model Model

(e.g.: GPT) (e.g.: BERT)

Computationally
Intensive !

Input: i Input
>Unidiréetienab(leftd sezight) ‘ : l Bidirectional
Both

2> Evaluation / refinement/  leads to: Foundational models

specialisation

Expert guidance
highly required

What genomics can learn from Natural Language Processing?
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Computationally

Expert guidance

Intensive !

2. Evaluation / refinement /

highly required

https://www.youtube.com/watch?v=pjej9niIsV3E
TechViz - The Data Science Guy

> Self-supervised learning to build foundational models

1. Pre-training

specialisation

What genomics can learn from Natural Language Processing?
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Two self-supervised learning strategies:

Output Output
Causal Masked
Language Language
Model Model
(e.g.: GPT) (e.g.: BERT)
Input: i Input
>Unidiréetienab(leftd sezight) ‘ : l Bidirectional
Both

leads to: Foundational models

N

(8),
Zero-shot prediction e &

p. 25

AUTREAU / StatInfOmics team / MalAGE unit



Computationally

Expert guidance

Intensive !

2. Evaluation / refinement /

highly required

https://www.youtube.com/watch?v=pjej9niIsV3E
TechViz - The Data Science Guy

> Self-supervised learning to build foundational models

1. Pre-training

specialisation

Two self-supervised learning strategies:

Output Output
Causal Masked
Language Language
Model Model
(e.g.: GPT) (e.g.: BERT)
Input: i Input
>Unidiréetienab(leftd sezight) ‘ : l Bidirectional
Both

leads to: Foundational models

)

)
Zero-shot prediction "

Additional . .
. * Reinforcement learning
Specialized . Fine-tuni ific task
What genomics can learn from Natural Language Processing? Datasets Ine-{uning on SpPecific tasks
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> From NLP to genomic: Evo 2

Towards generalistic Large Language of Life Models (LLLM)



Large Language of Life Models (LLLM)

1. English
“THE QUICK BROWN FOX
JUMPS OVER THE LAZY DOG"
2. DNA
XD AGGACTGGACC
3. Protein

FYER KHWE

4 Genome
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BioMedLM
PubMedBERT
BioBERT

DNABERT
DNABERT-2
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ESM
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Nucleotide Transformer

Evo
Evo2

https://doi.org/10.48550/arXiv.2506.02212

p. 28


https://doi.org/10.48550/arXiv.2506.02212

> Evo (november 2024)

RESEARCH ARTICLE

GENERATIVE GENOMICS

Sequence modeling and design from molecular
to genome scale with Evo

Eric Nguyen'21, Michael Poli**11, Matthew G. Durrant'f, Brian Kang'+, Dhruva Katrekar'f,

David B. Li"*{, Liam J. Bartie’, Armin W. Thomas®, Samuel H. King'?, Garyk Brixi"®, Jeremy Sullivan’,
Madelena Y. Ng’, Ashley Lewis®, Aaron Lou?, Stefano Ermon®?, Stephen A. Baccus'?,

Tina Hernandez-Boussard®, Christopher Ré?, Patrick D. Hsu'"!*, Brian L. Hie'>12*

The genome is a sequence that encodes the DNA, RNA, and proteins that orchestrate an organism’s
function. We present Evo, a long-context genomic foundation model with a frontier architecture
trained on millions of prokaryotic and phage genomes, and report scaling laws on DNA to complement
observations in language and vision. Evo generalizes across DNA, RNA, and proteins, enabling
zero-shot function prediction competitive with domain-specific language models and the generation

of functional CRISPR-Cas and transposon systems, representing the first examples of protein-RNA
and protein-DNA codesign with a language model. Evo also learns how small mutations affect whole-
organism fitness and generates megabase-scale sequences with plausible genomic architecture.

These prediction and generation capabilities span molecular to genomic scales of complexity, advancing
our understanding and control of biclogy.
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Molecular scale

DNA  Protein DNA RNA DNA ~ Protein RNA
T T T T, T T T

Evo: A genomic foundation model

p( 1)

Evo, a 7-billion-parameter genomic foundation meodel, learns biological complexity from individual
nucleotides to whole genomes. Trained on 2.7 million raw prokaryotic and phage genome seguences, Evo is
naturally multimedal, enabling the codesign of DNA, RMA, and protein molecules that form higher-order
functional systems. Evo is also inherently multiscale, enabling prediction and generation tasks at the level
of molecules, systems, and genomes.

p. 29



> Evo?2 (preprint released in february)

Built to predict the next token (GPT-like architecture).

Single-nucleotide resolution

Uses a different architecture than Transformers to handle genome-scale .
context efficiently (Hyena, optimized sub-quadratic architecture)
Training cost ~5-10 M$ (GPU + electricity only)

Developed in direct collaboration with NVIDIA to manage computation

1. Pretraining {1 8k context (base model)

2. Midtraining | 1M context
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> Applications

\ Prediction Prediction Design
Genel/IncRNA essentiality Genetic variant effects Genome-scale
* oA = & o= O)_0) il Cellular/
W M o - sl 'J\l Q Organismal
: A w y
' & . N d
Prediction Prediction Design
Protein mutational Secondary Protein complex
scanning structure feature 1D generation
&9 N C’\r’/—E’;d—\ Protein
layer G |
Prediction Prediction Prediction
ncRNA mutational scanning  RNA stability/decay Exon classification
Splicing variant effects
P RNA
= H H F
Prediction Design
Regulatory element Chromatin accessibility
feature ID controlled generation
Epigenome
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INRAZ
What genomics can learn from Natural Language Processing? p. 31

11/06/2025 / Guillaume GAUTREAU / StatInfOmics team / MalAGE unit



> Applications
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> Applications: zero-shot prediction of variant effects

Evo 2
Likelihood landscape

o\__—ﬂfkeﬁhcod

Vlikelihood

vy

Predict fitness

Pl )

P( GENSSDERIRDRED )
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> Applications: zero-shot prediction of variant effects

Evo 2 —
Likelihood landscape

- Correlatign to Deep Mutation
/ e Scanning (DMS) assays
(https://proteingym.org/)

viikelihood

vy oy

Predict fitness

— OO

Selection

[T Variant Mutation Counts  Counts Functional
p( ) (input) (selected) score
Blue AGOP 3 1 0.33
Green WT 3 3 1
| _ Purple S36T 3 5 1.67
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> Applications: zero-shot prediction of variant effects
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> Applications
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> Applications: prediction of gene essentiality

Evo 2
Likelihood landscape

o ——4likelihood

Zero-shot prokaryotic gene essentiality prediction

ALikelihood ratio of whole genome Ge?el't Evo 2 40B oM ae t
' i essentiali
or long genomic segment Predict y 5 .
R pEHA=-CH—=) — Non-essential Evo 1 | * o =telm hifaweny
Viikelihood : Conservation 1 o delenitleqt. o o
p( ) — Essential " :
/@(\ Positional control | w« - jwm.e: . .
v+ v ¢ p( ) — Essential GenSLM [T T o rwmlew - -
|
- 04 0.5 0.6 0.7 0.8 0.9
Predict fitness S o

Prediction are compared to binary essentiality data
(labeled as “essential” or “nonessential”) for 56 bacterial
= = genomes from the DEG database (Zhang, 2004).
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> Generative applications: DNA designing up to genome scale

200,000 nt | O Gene called by Prodigal B Gene called by Prodigal with Pfam hit
M gente sy mmmmwmm POPHD A ) D ) D D1 ] PA D Dot e i ot o o et it
e 4 AL LR U e e e it TG A R UL A LR B S A

=M. genitalium Prompt

Evo 2 408 MW Lasuldu s Bl PN-(}WWN fIOHPHPR (£ 1 HW«W— A R A «HHWM WMWW% B IR W«PM

\ . %N \ \ e K % N N \
DNA ligase N Release factor glutamine Unknown protein Protein Ribosomal processing ‘Aspartate ssDNA )
N\ N\ methyltransferase M RecA \ cysteine protease Prp \ carbamoyltransferase binding protein
Beta sliding clamp tRNA(lle)- Non-specific ) Aminotransferase Large ribosomal UDP-glucuronate
lysidine synthase  protein-tyrosine kinase Elongation factor P subunit protein uL10  decarboxylase
» Synthetic design: generate proteins, enzymes, operons, pathways
« Promoter engineering: generate inducible / tunable promoters
« Anonymization: generate synthetic genomes preserving signal
* Benchmarking: generate realistic synthetic datasets, diversity normalization
 Pangenome compression: generate normalized representations
« Assembly gap filling (MAGS)
« Any other idea?
INRAZ
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> Conclusion on Evo?2

» Highly versatile model. Idea : reinforcement learning to generate microbial ecosystems (synthetic ecology) ?

* Openly available, but requires an Nvidia H100 GPU (~30k€) to run locally

— User-friendly interface available: https://arcinstitute.org/tools/evo/evo-designer

» Ethical considerations to anticipate (biosecurity, misuses)

» Bioterrorism (human pathogenic viruses weren'’t included in Evo?2)

» [Fake dataset pollution, science integrity issues...

« Partially interpretable via Sparse AutoEncoders (explored in the Evo2 article)
» Personal opinion from our first tries (M2 intern): still a big margin of improvement (at least on Evol)
* Next step: LLM x LLLM : « Talk to your genome »
« ChatNT (published last week in Nature Machine Intelligence)
* BioReason (Evo2 x Qwen3), preprint on Arxiv
. . Question Ground Truth (KEGG) BioReason’s Output
i Retrleval Augmented Generatlon ? rQuest‘il:ln R fStep 1: The variant KEGG_800 represents a C>G N (@ <think> )
substitution at position 4945969 on chromosome 17, 5t ep 3: This mutation likely alters the protein structure
<|im_start|>user occurring in the PFN1 gene which encodes profilin-1 function of profilin-1, potentially affecting its ahmy to bmd
- Chromosome Number: 17 protein. achn monomers or regulate actin polymerization.
.= Step 2: Thi leotide ch ially affecti . . . .
8 Network Definition of the Pathway: f:xs‘:honalllir ri]r:cpcej:):nf ccici?fii. estiRbvasgss i\‘/:ssli(gl: ;2;7;&?:::‘;;25::;&2?"“1Utes te:ALsthmughia
© Actin(fmonomeric) # PFN1* # Actin(filamentous) H i
® Step 10: The progressive loss of motor neurons results in This C>G mutahon in the PFN1 gene likely disrupts profilin-1
[=] Genes in the Pathway: muscle weakness, atrophy, and eventually paralysis - the function, impairing its b lity to regulate actin dynamics by
o ACTB; actin beta | ACTG1; actin gamma 1 | PFN1; profilin hallmark clinical features of ALS. b ding monomeric actin and pmmuh g poly ation. The
g 1 e e e
X The C>G mutation in the PFN1 gene ... This cytoskeletal f ansport and cellular hOMEUSEES\S contributing to the
Given this context, what is the biological effect of this dysfunction contributes to axonal transport defects and development of familial amyotrophic lateral sclerosis (ALS).
I N RA@ PFN1 allele, specifically what disease does this contribute motor neuron degeneration, ultimately leading to familial /thinke
to? Amyotrophic Lateral Sclerosis (ALS). - o .
What genom|cs can |ea m from Natu ral Language Process|ng? \_ <lim_end|><[im_start|>assistant JRS ) \Answer:amyotmnhm lateral sclerosis (ALS)<[im_end|> ) p 40
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— User-friendly interface available: https://arcinstitute.org/tools/evo/evo-designer

> Conclusion on Evo?2

Highly versatile model. Idea : reinforcement learning to generate microbial ecosystems (synthetic ecology) ?

Openly available, but requires an H100 GPU (~30k€) to run locally
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Ethical considerations to anticipate (biosecurity, misuses)
e BRioterrorism (hiiman nathoanenic viriises weren’t incliided in Fvo?)
Question Ground Truth (KEGG) BioReason'’s Output
B o . . 2
Question Step 1: The variant KEGG_800 represents a C>G i <think>
substitution at position 4945969 on chromosome 17, ... Step 3: This mutation likely alters the protein structure or
<|im_start|>user occurring in the PFN1 gene which encodes profilin-1 fu ”_CﬁDF\ of profilin-1, potential!y affecting_ its_ability to bind
Chromosome Number: 17 protein. actin monomers or regulate actin polymerization.
i Step 2 s r"uucleohde change - potertislly affecting a Step 10: This specific mutation contributes to ALS through a
Network Definition of the Pathway: functionally important domain. :
. : > cytoskeletal/proteostasis pathway...
Actin(monomeric) #/ PFN1" // Actin(filamentous) : ;
' Step 10: The progressive loss of motor neurons resylts in This C>G mutation in the PEN1 gene likely disrupts profilin-1
Genes in the Pathway: muscle weakness, atrophy, and eventually paralysis - the function, impairing its ability to regulate actin dynamics by
ACTB; actin beta | ACTG1: actin gamma 1 | PFN1; profilin hallmark clinical features of ALS. binding monomeric actin and promoting polymerization. The
1 resulting cytoskeletal dysfunction affects motor neuron axonal
The C>G mutation in the PFN1 gene ... This cytoskeletal transport and cellular homeostasis, contributing to the
Given this context, what is the biological effect of this dysfunction contributes to axonal transport defects and development of familial amyotrophic lateral sclerosis (ALS).
PFN1 allele, specifically what disease does this contribute motor neuron degeneration, ultimately leading to familial </think>
S . :
tC-.. g ; Amyotrophic Lateral Sclerosis (ALS). Answer: amyotrophic lateral sclerosis (ALS)<|im_end|>
o <|im_end|><|im_start|>assistant g\ J Y,
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