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Pangenomics inspired by linguistic

Heaps’ Law is an empirical law that describesthe number of distinct words in a document as an increasingfunction of the document length.

γ > 1 : supralinear tendancyγ = 1 : linear tendancy0 < γ < 1 : sublinear tendancy

Harold Heaps(1922-2016)
The Bible, King JamesVersion, Complete

The pangenomic concept to measure genomic diversity andstability (core and accessory genomes)

Tettelin et al. 2008



p. 3What genomics can learn from Natural Language Processing?
11/06/2025 / Guillaume GAUTREAU / StatInfOmics team / MaIAGE unit

What does pangenome mean?
# of “pangenome” or “pan-genome” occurrences

Tettelin et al.,2008 Garrison et al., 2018(VG)

From an approach to measuregenomic biodiversity...
... to methods for managinggraphs of ever-increasinggenomic sequences
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pangenome graphs tries tocompile illustrating allpossible genome variationssampled in a population

Methods to handle ever-increasing genomic sequences
Pangenomics now deeply relies on pangenome graphs:
– pangenome graphs tries to compile all the possible (or at lest as much as possible) genomicvariations sampled in a population in a graph (DBG, variation graphs..).
– But each day, genomic information became and more abundant, so these graphs grewtremendously complex !
==> Efforts to optimize these graphs and make them computationally manageable open up asignificant area of research
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pangenome graphs tries tocompile illustrating allpossible genome variationssampled in a population

What to learn from Natural Language Processing ?
• Instead of building graphs of all combinations of words insentences, research in linguistics, especially NaturalLanguage Processing (NLP) now relies on Large LanguageModels (LLMs) to capture the relationships between words(more generally lexical tokens) in the language
• These models, composed of billions of parameters, are pre-trained on vast datasets and can capture complex linguisticstructures and semantics without explicitly mapping out allpossible combinations.
• Then, these models are fine-tuned (Brown et al., 2020) to awide range of downstream tasks (e.g.: chat bots)
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Pangenome and AI
• It is uncertain whether constructing increasingly larger pangenome graphs using sophisticateddata structures and algorithms is the best approach to deciphering and understanding biology
• Instead, due to the open-ended nature of genetic diversity (much like language ?)constructingpangenomes as large foundational models could help to model and capture unknown genomicrelationships until now.
In other words, is pangenome the concept of a Foundation Model ?
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IA and Large Language Models
Back to the basics
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AI legal definition (AI act)
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ArtificialIntelligence

MachineLearning

DeepLearning

LargeLanguageModels

Symbolic AIAI?
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Transformer Architecture « Attention Is All You Need »

• 2017 and already on track tobecome one of the most citedarticles (>180k)
• Design for translation purposes
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The intuition of attention: look at everything, but not equally
Instead of translating word-by-word, attention looks at whichEnglish words are important for each French word

Attention finds what is most important in context to understand the actual meaning of each token
Tathagata, 2023https://iamtatha.medium.com/unveiling-the-power-of-attention-mechanism-revolutionizing-artificial-intelligence-17aa209ce714
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« Attention Is All You Need »
Given a prompt:

token

Ruler, 2016https://www.ruder.io/word-embeddings-1/



p. 18What genomics can learn from Natural Language Processing?
11/06/2025 / Guillaume GAUTREAU / StatInfOmics team / MaIAGE unit

« Attention Is All You Need »
Given a prompt:

Billons of trainedweights in the model

token

Feed forward

• Passes through dozens oftransformer layers.
• Each layer captures moreand more information aboutthe links between tokens

TRASNFORMER



p. 19What genomics can learn from Natural Language Processing?
11/06/2025 / Guillaume GAUTREAU / StatInfOmics team / MaIAGE unit

« Attention Is All You Need »
Given a prompt:

Billons of trainedweights in the model

Tokens represented in amultidimensional space« embeddings »

token

Feed forward

Predicts next tokens

• Passes through dozens oftransformer layers.
• Each layer captures moreand more information aboutthe links between tokens

Encoder-only Encoder-Decoder Decoder-only

TRASNFORMER

Translate into another language
Ruler, 2016https://www.ruder.io/word-embeddings-1/
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Self-supervised learning to build foundational models
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Self-supervised learning to build foundational models
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Self-supervised learning to build foundational models

• Reinforcement learning• Fine-tuning on specific tasks

Foundational models2. Evaluation / refinement /specialisation

AdditionalSpecializedDatasets

CausalLanguageModel(e.g.: GPT)

MaskedLanguageModel(e.g.: BERT)
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From NLP to genomic: Evo 2
Towards generalistic Large Language of Life Models (LLLM)
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Large Language of Life Models (LLLM)

Rannon et al. 2025https://doi.org/10.48550/arXiv.2506.02212

• BioMedLM• PubMedBERT• BioBERT

• ESM• ProteinBERT• ProtMamba

• DNABERT• DNABERT-2• DNABERT-S

• Nucleotide Transformer• Evo• Evo2

https://doi.org/10.48550/arXiv.2506.02212
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Evo (november 2024)
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Evo2 (preprint released in february)
• Built to predict the next token (GPT-like architecture).• Single-nucleotide resolution• Uses a different architecture than Transformers to handle genome-scalecontext efficiently (Hyena, optimized sub-quadratic architecture)• Training cost ~5-10 M$ (GPU + electricity only)• Developed in direct collaboration with NVIDIA to manage computation
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Applications: zero-shot prediction of variant effects
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Applications: zero-shot prediction of variant effects
Correlation to Deep MutationScanning (DMS) assays(https://proteingym.org/)

ProteinGym
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Applications: prediction of gene essentiality

Prediction are compared to binary essentiality data(labeled as “essential” or “nonessential”) for 56 bacterialgenomes from the DEG database (Zhang, 2004).
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Generative applications: DNA designing up to genome scale

• Synthetic design: generate proteins, enzymes, operons, pathways
• Promoter engineering: generate inducible / tunable promoters
• Anonymization: generate synthetic genomes preserving signal
• Benchmarking: generate realistic synthetic datasets, diversity normalization
• Pangenome compression: generate normalized representations
• Assembly gap filling (MAGs)
• Any other idea?
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Conclusion on Evo2
• Highly versatile model. Idea : reinforcement learning to generate microbial ecosystems (synthetic ecology) ?
• Openly available, but requires an Nvidia H100 GPU (~30k€) to run locally
→ User-friendly interface available: https://arcinstitute.org/tools/evo/evo-designer
• Ethical considerations to anticipate (biosecurity, misuses)

• Bioterrorism (human pathogenic viruses weren’t included in Evo2)
• Fake dataset pollution, science integrity issues...

• Partially interpretable via Sparse AutoEncoders (explored in the Evo2 article)
• Personal opinion from our first tries (M2 intern): still a big margin of improvement (at least on Evo1)
• Next step: LLM x LLLM : « Talk to your genome »

• ChatNT (published last week in Nature Machine Intelligence)
• BioReason (Evo2 x Qwen3), preprint on Arxiv

• Retrieval Augmented Generation ?

https://arcinstitute.org/tools/evo/evo-designer
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